Forest UCM NLM

From New IAC Wiki
Jump to navigation Jump to search


Newton's Laws of Motion

Limits of Classical Mechanic

Classical Mechanics is the formulations of physics developed by Newton (1642-1727), Lagrange(1736-1813), and Hamilton(1805-1865).

It may be used to describe the motion of objects which are not moving at high speeds (0.1[math] c[/math]) nor are microscopically small ( [math]10^{-9} m[/math]).

The laws are formulated in terms of space, time, mass, and force:


Vectors

Vector Notation

A vector is a mathematical construct of ordered elements that represent magnitude and direction simultaneously.

[math]\vec{r} = x \hat{i} + y \hat{j} + z \hat{k} = (x,y,z) = \sum_1^3 r_i \hat{e}_i[/math]


Vectors satisfy the commutative (order of addition doesn't matter) and associative ( doesn't matter which you add first) properties.


The multiplication of two vectors is not uniquely defined. At least three types of vector products may be defined.

Scalar ( Dot ) product

definition

[math]\vec{a} \cdot \vec{b} = \left | a \right | \left | b \right | cos \theta = a_1 b_1 + a_2 b_2 + a_3 b_3[/math]

physical intepretation
[math]\frac{\vec{a} \cdot \vec{b}}{\left | \vec{b} \right |}[/math] is the length of [math]\vec{a}[/math] that is along the direction of [math]\vec{b}[/math] (a projection like the casting of a shadow)

Commutative property of scalar product

[math]\vec{a} \cdot \vec{b} = \vec{b} \cdot \vec{a} [/math]

proof
[math]\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3[/math] definition of dot product
[math] a_1 b_1 + a_2 b_2 + a_3 b_3=b_1 a_1 + b_2 a_2 + b_3 a_3 [/math] comutative property of multiplication
[math] b_1 a_1 + b_2 a_2 + b_3 a_3=\vec{b} \cdot \vec{a}[/math] definition of dot product
[math]\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}[/math]

Distributive property of scalar product

[math]\vec{a} \cdot \left ( \vec{b} + \vec{c} \right ) = \vec{a} \cdot \vec{b} + \vec{a} \cdot \vec{c}[/math]

Vector ( Cross ) product

definition
[math]\vec{a} \times \vec{b} = \left( a_2b_3-a_3b_2\right) \hat{e}_1 +\left( a_3b_1-a_1b_3\right) \hat{e}_2 +\left( a_1b_2-a_2b_1\right) \hat{e}_3[/math]

The vector product of [math]\vec{a}[/math] and [math]\vec{b}[/math] is a third vector [math]\vec{c}[/math] with the following properties.

[math]\left | \vec{c} \right | = \left | \vec{a} \right | \left | \vec{b} \right | \sin \theta[/math]
[math]\vec{c}[/math] is [math]\perp[/math] to [math]\vec{a}[/math] and [math]\vec{b}[/math]
the right hand rule convention is used to determine the direction of [math]\vec{c}[/math]
physical interpretation
[math]A = \left | \vec{a} \times \vec{b} \right | =[/math] area of a parallelogram with vectors [math]\vec{a}[/math] and [math]\vec{b}[/math] forming adjacent edges

let [math]h[/math] represent the perpendicular distance from the teminus of [math]\vec{b}[/math] to the line of action of [math]\vec{a}[/math] ( a.k.a. the height)

then the area of the parallelogram is given by

[math]A=\left | \vec{a} \right | h[/math]

the height [math]h[/math] is equivalent to [math]\left | \vec{b} \right | \sin \theta[/math] where [math]\theta[/math] is the angle between the vectors [math]\vec{a}[/math] and [math]\vec{b}[/math]

thus

[math]A=\left | \vec{a} \right | h = \left | \vec{a} \right | \left ( \left | \vec{b} \right | \sin \theta \right ) = \left | \vec{a} \times \vec{b} \right | [/math]

NON-Commutative property of vector product

[math]\vec{a} \times \vec{b} = -\vec{b} \times \vec{a} [/math]

proof
[math]\vec{a} \cdot \vec{b} = a_1 b_1 + a_2 b_2 + a_3 b_3[/math] definition of dot product
[math] a_1 b_1 + a_2 b_2 + a_3 b_3=b_1 a_1 + b_2 a_2 + b_3 a_3 [/math] comutative property of multiplication
[math] b_1 a_1 + b_2 a_2 + b_3 a_3=\vec{b} \cdot \vec{a}[/math] definition of dot product
[math]\vec{a} \cdot \vec{b}=\vec{b} \cdot \vec{a}[/math]

Distributive property of the vector product

[math]\vec{a} \times \left ( \vec{b} + \vec{c} \right ) = \vec{a} \times \vec{b} + \vec{a} \times \vec{c}[/math]

The scalar triple product

definition
scalar triple product [math]\equiv \vec{a} \cdot \left (\vec{b} \times \vec{c} \right )[/math]
physical interpretation
the volume of a parallelpiped with the vectors [math]\vec{a}[/math], [math]\vec{b}[/math], [math]\vec{c}[/math] forming adjacent edges is given by
[math]V = \left | \vec{a} \cdot \left (\vec{b} \times \vec{c} \right ) \right |[/math]

if

[math]\vec{d} \equiv \vec{b} \times \vec{c} =[/math] Area vector of the parallelpiped base

then

[math]V = h \left | \vec{d} \right |[/math]

as shown in a description of the dot product, the height of the parallelpiped can be written as

[math]h=a \cos \beta[/math]
[math]V= h \left | \vec{d} \right | = a \cos \beta\left | \vec{d} \right | = \vec{a} \cdot \vec{d} = \left | \vec{a} \cdot \left (\vec{b} \times \vec{c} \right ) \right |[/math]

A third vector product is the tensor direct product.

Space and Time

Space

Cartesian, Spherical, and Cylindrical coordinate systems are commonly used to describe three-dimensional space.

Forest_UCM_NLM_Ch1_CoordSys



Forest_Ugrad_ClassicalMechanics