Lab 23 RS

From New IAC Wiki
Jump to navigation Jump to search

Go Back to All Lab Reports


Inverting OP Amp

1. Construct the inverting amplifier according to the wiring diagram below.

TF EIM Lab23.png

Here is the data sheet for the 741 Op Amp

File:LM741CN OpAmp.pdf


Use [math]R_1 = 1k\Omega[/math] and [math]R_2 = 10 k\Omega[/math] as starting values.

2. Insert a 0.1 [math]\mu[/math]F capacitor between ground and both Op Amp power supply input pins. The Power supply connections for the Op amp are not shown in the above circuit diagram, check the data sheet.

Gain measurements

1.) Measure the gain as a function of frequency between 100 Hz and 2 MHz for three values of [math]R_2[/math] = 10 k[math]\Omega[/math], 100 k[math]\Omega[/math], 1M[math]\Omega[/math]. Keep [math]R_1[/math] at [math]1k\Omega[/math].


I have used the following values of [math]R_1[/math] and [math]R_2[/math] (as was suggested by Dr Forrest at the lecture)

[math]R_1 = (10.02 \pm 0.02)\ k\Omega[/math]
a) [math]R_2 = (99.0 \pm 0.2)\ k\Omega[/math]
b) [math]R_2 = (198.5 \pm 0.2)\ k\Omega[/math]
c) [math]R_2 = (800.0 \pm 2.0)\ k\Omega[/math]

So my theoretical gain of OP Amp would be:

a) Gain1[math]= \frac{R_2}{R_1} = \frac{99.0 \pm 0.2}{10.02 \pm 0.02} = (9.88 \pm 0.03)[/math]
b) Gain2[math]= \frac{R_2}{R_1} = \frac{198.5 \pm 0.2}{10.02 \pm 0.02} = (19.81 \pm 0.04)[/math]
c) Gain3[math]= \frac{R_2}{R_1} = \frac{800.0 \pm 2.0}{10.02 \pm 0.02} = (79.84 \pm 0.26)[/math]


Below is my measurements and gain calculation for the case a) [math]R_1 = (10.02 \pm 0.02)\ k\Omega[/math] and [math]R_2 = (99.0 \pm 0.2)\ k\Omega[/math]

Gain t01.png

Below is my measurements and gain calculation for the case b) [math]R_1 = (10.02 \pm 0.02)\ k\Omega[/math] and [math]R_2 = (198.5 \pm 0.2)\ k\Omega[/math]

Gain t02.png


Below is my measurements and gain calculation for the case c) [math]R_1 = (10.02 \pm 0.02)\ k\Omega[/math] and [math]R_2 = (800.0 \pm 2.0)\ k\Omega[/math]

Gain t03.png


2.) Graph the above measurements with the Gain in units of decibels (dB) and with a logarithmic scale for the frequency axis.


Below my plot of gain as function of frequency. Here

[math]G_{dB} \left(\frac{V_{out}}{V_{in}}\right) = 20\cdot \log_{10} {\frac{V_{out}}{V_{in}}}[/math]

Here the error calculation as usual and for this specific case is:

[math]dG_{dB}(x) = \frac{\partial G_{dB}(x)}{\partial x}\cdot dx = \frac{20}{x\ \ln 10}\cdot dx[/math]

where [math]x[/math] and [math]dx[/math] are corresponding gain and error of gain from the tables above


Gain p03.png

Impedance

Input Impedance

  1. Measure [math]R_{in}[/math] for the 10 fold and 100 fold amplifier at ~100 Hz and 10 kHz frequency.


I am going to measure the input and output impedance of my amplifier using the following equivalent circuit:

Draw01.png

where the shaded region is my actual amplifier constructed before:

Draw02.png

From equivalent circuit the input impedance is:

[math]R_{inp} = \frac{V_{inp}}{I_{inp}}[/math]

and from my real circuit inside the shaded region:

[math]I_{inp} = \frac{V_{inp}-V_1}{R_1}[/math]

so finally my input impedance becomes:

[math]R_{inp} = \frac{V_{inp}}{V_{inp}-V_1}\ R_1[/math]


Below is the table with my measurements and input impedance calculations for four asked different cases

Inp01.png


As we can see the input impedance equals the resistor value [math]R_1[/math] for low frequency [math]f=100\ Hz[/math] and increase up to [math]33\ k\Omega[/math] for high frequency [math]f=10\ kHz[/math].

Output Impedance

  1. Measure [math]R_{out}[/math] for the 10 fold and 100 fold amplifier at ~100 Hz and 10 kHz frequency. Be sure to keep the output ([math]V_{out}[/math]) undistorted


Again the equivalent circuit I am going to use is:

Draw011.png

And my output impedance is:

[math]V_{out} = V - I_{out}\cdot R_{out}[/math]

But now I am going to use the load resistor [math]R_L[/math] to measure the output circuit:

[math]I_{out} = \frac{V_{out}}{R_L}[/math]

By graphing the current on the x-axis and the measured voltage [math]V_{out}[/math] on the y-axis for several values of the load resistance [math]R_L[/math] we can find the output internal impedance of our amplifier as the slope of the line [math]V_{out}=V_A - I_{out}\cdot R_{out}[/math]


Below is my measurements and current calculation for the case f = 100 Hz, 10 kHz and gain = 10 (here nothing change with frequency)

Out01.png

Below is my measurements and current calculation for the case f = 100 Hz, 10 kHz and gain = 80 (here nothing change with frequency)

Out02.png


As we can see from the tables above my output voltage [math]V_{out}[/math] doesn't change as the current [math]I_{out}[/math] change. It is follow that the slope of the line is zero for all cases and the output impedance is also zero at least for load resistor varying from [math]100\ k\Omega[/math] up to [math]300\ k\Omega[/math]:

[math]R_{out} = 0[/math]

[math]V_{io}[/math] and [math]I_{B}[/math]

[math]V_{out}= -\frac{R_1}{R_2} V_1 + \left ( 1 + \frac{R_1}{R_2}\right)V_{io} + R_2 I_B[/math] (need to be checked)


[math]V_{out}= -\frac{R_2}{R_1} V_1 + \left ( 1 + \frac{R_2}{R_1}\right)V_{io} + R_2 I_B[/math]

Use the above equation and two measurements of [math]V_{out}[/math], [math]R_1[/math], and [math]R_2[/math] to extract [math]V_{io}[/math] and [math]I_B[/math]. I will use two different values of [math]R_2[/math] to make two different measurements. [math] V_{in}[/math]=0 (grounded).


Below are my measurements:

1) [math]f=1\ kHz[/math] [math]R_1 = (10.02 \pm 0.02)\ k\Omega[/math], [math]R_2 = (99.0 \pm 0.2)\ k\Omega[/math]:  [math]V_{in}=(0 \pm 2)\ mV[/math] [math]V_{out}=(8 \pm 1)\ mV[/math]
2) [math]f=1\ kHz[/math] [math]R_1 = (10.02 \pm 0.02)\ k\Omega[/math], [math]R_2 = (800.0 \pm 2.0)\ k\Omega[/math]:  [math]V_{in}=(0 \pm 2)\ mV[/math] [math]V_{out}=(60 \pm 2)\ mV[/math]


Now I can construct 2 equations with 2 unknowns [math]V_{io}[/math] and [math]I_B[/math].

[math] (1 + (99.0 \pm 0.02)/(10.02 \pm 0.02)\cdot V_{io} + ((99.0 \pm 0.2)\ k\Omega)\cdot I_B = (8 \pm 1)\ mV[/math]
[math] (1 + (800.0 \pm 2.0)/(10.02 \pm 0.02)\cdot V_{io} + ((800.0 \pm 2.0)\ k\Omega)\cdot I_B = (60 \pm 2)\ mV[/math]

or

[math] (10.88 \pm 0.03)\cdot V_{io} + (99.0 \pm 0.2)\cdot 10^3\ I_B = (8 \pm 1)\cdot 10^{-3}[/math]
[math] (80.84 \pm 0.25)\cdot V_{io} + (800.0 \pm 2.0)\cdot 10^3\ I_B =(60 \pm 2)\cdot 10^{-3}[/math]


To solve these two equations with two unknowns I will use the matrix method. Let's do it in general to be able to handle error.

[math]\left( \begin{array}{cc} a_1 & b_1\\ a_2 & b_2 \end{array} \right)\left( \begin{array}{c} V_{io} \\ I_B \end{array} \right) = \left( \begin{array}{c} c_1 \\ c_2 \end{array} \right)[/math]

the two solutions are:

[math]V_{io} = \frac{\left| \begin{array}{cc} c_1 & b_1\\c_2 & b_2 \end{array} \right| }{\left| \begin{array}{cc} a_1 & b_1\\a_2 & b_2 \end{array} \right| } = \frac{c_1b_2-c_2b_1}{a_1b_2-a_2b_1}\ \ [/math]: [math]I_B = \frac{\left| \begin{array}{cc} a_1 & c_1\\a_2 & c_2 \end{array} \right| }{\left| \begin{array}{cc} a_1 & b_1\\a_2 & b_2 \end{array} \right| } = \frac{a_1c_2-a_2c_1}{a_1b_2-a_2b_1}[/math]


Substituting the corresponding coefficients in general solutions

[math]V_{io} = \frac{c_1b_2-c_2b_1}{a_1b_2-a_2b_1} = \frac{(8 \pm 1)\cdot 10^{-3}\cdot (800.0 \pm 2.0)\cdot 10^3 - (60 \pm 2)\cdot 10^{-3}\cdot (99.0 \pm 0.2)\cdot 10^3}{(10.88 \pm 0.03)\cdot (800.0 \pm 2.0)\cdot 10^3 - (80.84 \pm 0.25)\cdot (99.0 \pm 0.2)\cdot 10^3} =(8.67 \pm 119.50)\ pV [/math]
[math]I_B = \frac{a_1c_2-a_2c_1}{a_1b_2-a_2b_1} = \frac{(10.88 \pm 0.03)\cdot (60 \pm 2)\cdot 10^{-3} - (80.84 \pm 0.25)\cdot (8 \pm 1)\cdot 10^{-3}}{(10.88 \pm 0.03)\cdot (800.0 \pm 2.0)\cdot 10^3 - (80.84 \pm 0.25)\cdot (99.0 \pm 0.2)\cdot 10^3} =(0.66 \pm 1.18)\ mA [/math]

and by handling the error propagation we find:

[math]V_{io} =(8.67 \pm 119.50)\ pV [/math]
[math]I_B =(0.66 \pm 1.18)\ mA [/math]


From results above we see that we have the reasonable small values for [math]V_{io}[/math] and [math]I_B[/math] but my error is too large to believe in results. We need some special techniques to be able to measure this small quantities or we need some spacial instrumentation to be able to decrease the experimental error dramatically.

[math]I_{io}[/math]

Now we will put in a pull up resistor [math]R_3= \frac{R_1 R_2}{R_1+R_2}[/math] as shown below.

TF EIM Lab23a.png

Instead of the current [math]I_B[/math] we have the current [math]I_{io}[/math]

[math]V_{out}= -\frac{R_1}{R_2} V_1 + \left ( 1 + \frac{R_1}{R_2}\right)V_{io} + R_2 I_{io}[/math]

Use the same technique and resistors from the previous section to construct 2 equations and 2 unknowns and extract [math]I_{io}[/math], keep [math]V_{in}[/math]=0.

The offset Null Circuit

TF EIM Lab23 b.png

  1. Construct the offset null circuit above.
  2. Adjust the potentiometer to minimize [math]V_{out}[/math] with [math]V_{in}=0[/math].
  3. Use a scope to measure the output noise.

Capacitors

Revert back to the pull up resistor

Capacitor in parallel with [math]R_2[/math]

TF EIM Lab23 c.png

  1. Select a capacitor such that[math] \frac{1}{\omega C_2} \approx R_2[/math] when [math]\omega[/math]= 10 kHz.
  2. Add the capacitor in parallel to [math]R_2[/math] so you have the circuit shown above.
  3. Use a pulse generator to input a sinusoidal voltage [math]V_{in}[/math]
  4. Measure the Gain as a function of the [math]V_{in}[/math] frequency and plot it.

Capacitor in series with R_1

TF EIM Lab23 d.png

  1. Select a capacitor such that[math] \frac{1}{\omega C_2} \approx R_1[/math] when [math]\omega[/math]= 1 kHz.
  2. Add the capacitor in series to [math]R_1[/math] so you have the circuit shown above.
  3. Use a pulse generator to input a sinusoidal voltage [math]V_{in}[/math]
  4. Measure the Gain as a function of the [math]V_{in}[/math] frequency and plot it.

Slew rate

Measure the slew and compare it to the factory spec.

Power Supply Rejection Ratio

  1. Set V_{in} = 0.
  2. Measure [math]V_{out}[/math] while changing [math]V_{cc}[/math]

Output voltage RMS noise [math]\Delta V_{out}^{RMS}[/math]

Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement