- Poisson's Equation
- [math]\nabla^2 \phi(\vec{\xi}) = - \frac{\rho}{\epsilon_0} =- \frac{e}{\epsilon_0} \delta(\vec{\xi})[/math]
Fourier Transform of Poisson's Equation
- [math]\frac{1}{(2 \pi)^{3/2}} \int e^{-i \vec{k} \cdot \vec{\xi}} \nabla^2 \phi(\vec{\xi})dV = - \frac{1}{(2 \pi)^{3/2}} \frac{e}{\epsilon_0} \int e^{-i \vec{k} \cdot \vec{\xi}}\delta(\vec{\xi}) dV [/math]
- [math]\frac{1}{(2 \pi)^{3/2}} \int e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \cdot (\vec{\nabla} \phi(\vec{\xi}))dV = - \frac{e}{(2 \pi)^{3/2}\epsilon_0} (1)[/math]
Product rule for dervatives
- [math]\frac{1}{(2 \pi)^{3/2}} \int \left \{ \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) - (\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}}) \cdot (\vec{\nabla} \phi) \right \} dV = - \frac{e}{(2 \pi)^{3/2}\epsilon_0} (1)[/math]
Gauss' Theorem:
- [math]\int \vec{\nabla} \cdot ( e^{-i \vec{k} \cdot \vec{\xi}} \vec{\nabla} \phi ) dV = \oint_S e^{-i \vec{k}\cdot \vec{\xi}} \vec{\nabla}\cdot d\vec{A}[/math]
- [math](\vec{\nabla} e^{-i \vec{k} \cdot \vec{\xi}) \cdot (\vec{\nabla} \phi )) = \vec{\nabla} \cdot (\phi \vec{\nabla} e^{-i \vec{k}) - \phi {\nabla}^2 e^{-i \vec{k}[/math]