1MeV=1.6⋅10−13J=1.6⋅10−13m2⋅kgs2
c=2.998⋅108ms
MeVC=0.534⋅10−21m⋅kgs
pe=14MeVc=7.47⋅10−21m⋅kgs
B=peqe⋅R
1T=kgC⋅s, qe=1.6⋅10−19C, 1T=10−4G
B(T)=pe(MeVc)⋅0.33⋅10−2R(m)
B(T)=4.67⋅10−2R(m)
1800=κ+900+β
1800=γ+900+β
κ=γ
R=acos(β)=acos(900−κ)=asin(κ)
d=R⋅(1−cos(κ))=a⋅(1−cos(κ))sin(κ)
\B(T)=pe(MeVc)⋅0.33⋅10−2⋅sin(κ)a(m) - general expression for B-field.
B(T)=4.67⋅10−2⋅sin(κ)a(m)
If κ=20 then sin(κ)=0.0348995 and our B-field becomes:
B(T)=0.163⋅10−2a(m)
a≃0.12m for the coils under consideration. Hence, B-field is:
B=0.01358T=135.8G