Quantum Qual Problems
Jump to navigation
Jump to search
1.) Given a quantum mechanical particle of mass confined inside a box of sides . The particle is allowed to move freely between and .
- Use the time-independent Schrodinger equation for this problem to obtain the general form for the eigenfunctions of the particle
- Now apply boundary conditions to obtain the specific eigenfunctions and eigenenergies for this specific problem.
- Assume and find the first 6 eigenenergies of the problem in terms of the box side length (), the particle mass () and standard constants. What are their quantum number? Make a sketch of the eigenvalue spectrum, a table listing these eigenenergies and the quantum numbers of all the states that correspond to them.
Solution:
2.)
In our case, using separation of variables, we will get 3 differential equations for x, y and z. W(x,y,z)=w(x)w(y)w(z)
The same will be for y and z.