Parameterizing the Ellipse Equation
Jump to navigation
Jump to search
The point that was the semi-major vertex, when rotated 6\[Degree] to the right becomes
In[1603]:= rFromYtoX.{1.6831832367824053`, 0, 0} // MatrixForm Out[1603]//MatrixForm= \!\( TagBox[ RowBox[{"(", "", TagBox[GridBox[{ {"1.6739625828969429`"}, {"0.17594055713873974`"}, {"0.`"} }, GridBoxAlignment->{ "Columns" -> {{Center}}, "ColumnsIndexed" -> {}, "Rows" -> {{Baseline}}, "RowsIndexed" -> {}}, GridBoxSpacings->{"Columns" -> { Offset[0.27999999999999997`], { Offset[0.5599999999999999]}, Offset[0.27999999999999997`]}, "ColumnsIndexed" -> {}, "Rows" -> { Offset[0.2], { Offset[0.4]}, Offset[0.2]}, "RowsIndexed" -> {}}], Column], "", ")"}], Function[BoxForm`e$, MatrixForm[BoxForm`e$]]]\)
Solving for the ellipse parameter given the angle and the corresponding X and Y components
X = 1.6739625828969429`; Y = 0.17594055713873974`; \[Theta] = 40; t = t /. Solve[ X^2 (Cos[6 \[Degree]])^2 + Y^2 (Sin[6 \[Degree]])^2 + \[CapitalDelta]a^2 + 2 X Y Cos[6 \[Degree]] Sin[6 \[Degree]] + 2 X \[CapitalDelta]a Cos[6 \[Degree]] + 2 Y \[CapitalDelta]a Sin[6 \[Degree]] + X^2 (Sin[6 \[Degree]])^2 + Y^2 (Cos[6 \[Degree]])^2 - 2 X Y Sin[6 \[Degree]] Cos[6 \[Degree]] == a^2 (Cos[t])^2 (Cos[6 \[Degree]])^2 + b^2 (Sin[t])^2 (Sin[6 \[Degree]])^2 + \[CapitalDelta]a^2 + 2 a b Cos[t] Cos[6 \[Degree]] Sin[t] Sin[6 \[Degree]] + 2 a \[CapitalDelta]a Cos[t] Cos[6 \[Degree]] + 2 b \[CapitalDelta]a Sin[t] Sin[6 \[Degree]] + a^2 (Cos[t])^2 (Sin[6 \[Degree]])^2 + b^2 (Sin[t])^2 (Cos[6 \[Degree]])^2 - 2 a b Cos[t] Sin[6 \[Degree]] Cos[6 \[Degree]] Sin[t], t] ClearAll[X, Y, \[Theta]];
{-1.31406, 1.4676, 3.06482 - 1.66742 I, 3.06482 + 1.66742 I}
We can see that at the vertex position, the parameter reaches it's minimum at 1.4676. This point reflects the right and left sides of the ellipse and the corresponding decreases in wire number as the parameter is increased.