Test for θ=20 and ϕ=1
All previous quantities where calculated for θ=20∘ and do not depend on the angle ϕ. The quantities that do change
xD1=rD1 cos(ϕ)=.5901cos(1∘))=.5900myD1=rD1cos(ϕ)=.5901sin(1∘))=.0103zD1=rD1cot(θ)=.5901cot(20)=1.6212 m
|
xD2=rD2cos(ϕ)=1.3055cos(1∘))=1.3053myD2=rD2sin(ϕ)=1.3055sin(1∘))=.0228zD2=rD2cot(θ)=1.3055cot(20)=3.5868 m
|
xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65∘)=2.53cos(1∘))(cot(20∘)+cos(1∘))cot(65∘)=0.7869
|
yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65∘)=2.53sin(1∘))(cot(20∘)+cos(1∘))cot(65∘)=.0137
|
zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65∘)=2.53cot(20∘)(cot(20∘)+cos(1∘))cot(65∘)=2.1624
|
D2P=√(xD2−xP)2+(yD2−yP)2+(zD2−zP)2=√(1.3053−0.7869)2+(.0228−.0137)2+(3.5868−2.1624)2=√(.5184)2+(.0091)2+(1.4244)2=1.51582872713 m
D1P=√(xP−xD1)2+(yP−yD1)2+(zP−zD1)2=√(0.7871−.5900)2+(.0137−.0103)2+(2.1624−1.6212)2=√(.1971)2+(.0034)2+(.5412)2=.575983862621 m
x_1^'=\frac{r_2^{'2}-r_1^{'2}}{4ae}-ae=\frac{1.5158^{'2}-.5758^{'2}}{4(1.0459)(.4497)}-(1.0459)(.4497)=.575\ \text{m}
Using the pythagorean theorem
y′=√.5762−.5752=.03 m
The two possible answers denote shifting to the left on right on the y axis. We take the direction of positive and negative to be the same as the sign convention for the angle phi starting on the x axis and shifting positive clockwise. A shift of 1 degree in phi at theta equal to 20 degrees only results in a small change in the x and y. This changes depending on the angles.
Function for the change in x' in the detector frame for change in ϕ and constant θ in the lab frame
D2P=√(xD2−xP)2+(yD2−yP)2+(zD2−zP)2
D1P=√(xP−xD1)2+(yP−yD1)2+(zP−zD1)2
x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
xD1=rD1 cos(ϕ)yD1=rD1cos(ϕ)zD1=rD1cot(θ)
|
xD2=rD2cos(ϕ)yD2=rD2sin(ϕ)zD2=rD2cot(θ)
|
xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65∘)
|
x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
x_1^'=\frac{x_{D2}^2-2x_Px_{D2}+x_P^2+y_{D2}^2-2y_Py_{D2}+y_P^2+z_{D2}^2-2z_Pz_{D2}+z_P^2-x_P^2+2x_Px_{D1}-x_{D1}^2-y_P^2+2y_Py_{D1}-y_{D1}^2-z_P^2+2z_Pz_{D1}-z_{D1}^2}{4ae}-ae
x_1^'=\frac{(x_{D2}^2+y_{D2}^2)-(x_{D1}^2+y_{D1}^2)+z_{D2}^2-z_{D1}^2-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae
x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae
Expressing this as functions of ϕ and non-differentiable constants
x_1^'=\frac{c_1+c_2-2x_P(\phi)x_{D2}(\phi)+2x_P(\phi)x_{D1}(\phi)-2y_P(\phi)y_{D2}(\phi)+2y_P(\phi)y_{D1}(\phi)-2z_P(\phi)c_3}{4c_4}-c_4
Differentiating with respect to ϕ
xD1=rD1cos(ϕ)⇒˙xD1=−rD1sin(ϕ)
|
yD1=rD1sin(ϕ)⇒˙yD1=rD1cos(ϕ)
|
xD2=rD2cos(ϕ)⇒˙xD2=−rD2sin(ϕ)
|
yD2=rD2sin(ϕ)⇒˙yD2=rD2cos(ϕ)
|
xP=2.52934271645cos(ϕ)cot(θ)+cos(ϕ)cot(65∘)⇒˙xP=−2.52934271645cot(θ)sin(ϕ)(cos(ϕ)cot(65∘+cot(θ))2
|
yP=2.52934271645sin(ϕ)cot(θ)+cos(ϕ)cot(65∘)⇒˙yP=−1.7206+2.52934271645cos(ϕ)cot(θ)(cos(ϕ)cot(65∘)+cot(θ))2
|
zP=2.52934271645cot(θ)cot(θ)+cos(ϕ)cot(65∘)⇒˙zP=−1.7206cot(θ)sin(ϕ))(cos(ϕ)cot(65)+cot(θ))2
|
dx11dϕ=−24c4ddϕ(xP(ϕ)xD2(ϕ))+24c4ddϕ(xP(ϕ)xD1(ϕ))−24c4ddϕ(yP(ϕ)yD2(ϕ))+24c4ddϕ(yP(ϕ)yD1(ϕ))−2c34c4ddϕzP(ϕ)
dx11dϕ=−24c4((˙xP(ϕ)xD2(ϕ)+xP(ϕ)˙xD2(ϕ))−(˙xP(ϕ)xD1(ϕ)+xP(ϕ)˙xD1(ϕ))+(˙yP(ϕ)yD2(ϕ)+yP(ϕ)˙yD2(ϕ))−(˙yP(ϕ)yD1(ϕ)+yP(ϕ)˙yD1(ϕ))+c3˙zP(ϕ))
Function for the wire number in the detector frame for change in ϕ and constant θ in the lab frame
Using the expression for wire number n in terms of θ for the detector mid-plane where ϕ=0:
n=−957.412tan(θ)+2.14437+430.626
We can use the inverse of this function to find the neighboring wire's corresponding angle theta
θ≡4.49876+0.293001n+0.000679074n2−3.57132×10−6n3
θ(n±1)≡4.49876+0.293001(n±1)+0.000679074(n±1)2−3.57132×10−6(n±1)3
We also know what the x' function must follow dependent on phi in the detector plane
x_1^'=\frac{((x_{D2}-x_P)^2+(y_{D2}-y_P)^2+(z_{D2}-z_P)^2)-((x_P-x_{D1})^2+(y_P-y_{D1})^2+(z_P-z_{D1})^2)}{4ae}-ae
x_1^'=\frac{(r_{D2}^2)-(r_{D1}^2)+cot^2(\theta)(r_{D2}^2-r_{D1}^2)-2x_P(x_{D2}-x_{D1})-2y_P(y_{D2}-y_{D1})-2z_P(z_{D2}-z_{D1})}{4ae}-ae
xD1=rD1 cos(ϕ)yD1=rD1cos(ϕ)zD1=rD1cot(θ)
|
xD2=rD2cos(ϕ)yD2=rD2sin(ϕ)zD2=rD2cot(θ)
|
xP=2.53cos(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
yP=2.53sin(ϕ)(cot(θ)+cos(ϕ)cot(65∘)
|
zP=2.53cot(θ)(cot(θ)+cos(ϕ)cot(65∘)
|
rD1=RLower Dandelincos(θ)=(ae−Δa)tan(65∘)cos(θ)rD2=RLower Dandelincos(θ)=(ae+Δa)tan(65∘)cos(θ)
We can take this point to be the x axis intercept and use the fact that each wire is titled by 6 degrees to the horizontal in the plane of the detector to create an equation
x′wire n=tan(6∘)y′+xn0
where the initial wire and x' position at the given theta is represented by n0
This equation can be solved for a hypothetical wire 0, which will allow the wire number to be the multiplicative factor for the change from the starting position.
xn=1sin4.79∘=2.52934sin110.21∘⇒xn=1=.2252
Since each wire is separated by .01337 meters
.2252−.01337=.2117=xn=0
Each wire becomes an equation of the form,
x′wire n=tan(6∘)y′+.2117+.01337 n
This agrees with CED simulation
Setting up Mathematica for DC Theta-Phi Isotropic Cone
File:FirstPass.pdf
File:SecondPass.pdf