Wire angle correspondance

From New IAC Wiki
Jump to navigation Jump to search

Straight Track Moller Rates

Goal: Confirm that the moller Rate (Hz) seen in on a wire agrees with the Rate calculated from the cross section. The torus is turned off so the wire is more easily correlated with the moller scattering angle. No need for track reconstruction.

Reproduce the plot below using Torus off

https://wiki.iac.isu.edu/index.php/File:TheoryDCHits.png


Layer1binWeighted.png


Then calculate Rate and compare to the reference.

Determining wire-theta correspondence

To associate the hits with the Moller scattering angle theta, the occupancy plots of the drift chamber hits by means of wire numbers and layer must be translated using the physical constraints of the detector. Using the data released for the DC:

DC: Drift Chambers(specs)

DC Geometry(geom)

Wires parallel all types.png

Examining the geometry file, we can see that each plane, not just the plane of the sense wires, is separated by a distance of D=.3861 cm. We can use the geometry of the wire placements to find

α=Dcos(60)=2D


Finding the separation distance between two adjacent sense wires

d=4(.3861 cm)cos(30)=1.337 cm


Hex.png


Since the separation between adjacent sense wires is uniform and at a set angle of 25 degrees with respect to the beam line, we can use this fact to determine the angle theta each wire makes when measured from the vertex.

DC geom.png


Δ x=1.337cos(25)cm=1.212cm


Δ z=1.337sin(25)cm=0.5652cm


The new x and z coordinates for wire 2 can be found using the change in the components

x=x+Δx
z=z+Δz


This can be extended to any point along the same wire plane, starting from the coordinates for wire 1

x=x+Δx× n
z=z+Δz× n

The angle theta that the wire makes with the vertex is given by

tanθ=x+Δxz+Δzθ=arctanx+Δxz+Δz

CED Verification

Using CED to verify the angle and wire correlation,


Zooming in on the view paralell to the direction of the wires in ced, we can examine the wire corresponding theta angle in the drift chamber.

ParallelWireZoom.png


Table 1: Superlayer 1 Wire 1 Coordinates
Coordinates(cm) Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
x 20.42 21.51 21.39 22.49 22.37 23.47
y 0.00 0.00 0.00 0.00 0.00 0.00
z 243.41 244.18 245.51 246.28 247.62 248.38
Table 2: Superlayer 1 Wire 2 Coordinates
Coordinates(cm) Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
x 21.64 22.73 22.61 23.71 23.58 24.69
y 0.00 0.00 0.00 0.00 0.00 0.00
z 242.86 243.62 244.94 245.71 247.05 247.81

Corresponding theta angles can be found for other wires, in Region 1, Superlayers 1 and 2.

Table 3: Superlayer 1 Wire-Angle Theta Correspondence in Degrees
Wire Number Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
1 4.79 5.03 4.98 5.22 5.16 5.40
2 5.09 5.33 5.27 5.51 5.45 5.69
62 24.42
63 24.76
64 25.10
77 29.46 29.60 29.41 29.55 29.37 29.51
78 29.79 29.93 29.74 29.88 29.69 29.83
79 30.12 30.26 30.07 30.21 30.02 30.16
110 40.19 40.28 40.05 40.13 39.91 39.99
111 40.51 40.59 40.36 40.44 40.21 40.29
112 40.82 40.90 40.67 40.75 40.52 40.60


Table 4: Superlayer 2 Wire-Angle Theta Correspondence in Degrees
Wire Number Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
1 4.79 5.03 4.98 5.22 5.16 5.40
2 5.09 5.33 5.27 5.51 5.45 5.69
77 29.46 29.60 29.41 29.56 29.37 29.51
78 29.79 29.93 29.74 29.88 29.70 29.84
79 30.13 30.27 30.07 30.21 30.02 30.16
110x 40.19 40.28 40.05 40.13 39.91 39.99
111 40.51 40.59 40.36 40.44 40.22 40.30
112 40.82 40.90 40.67 40.75 40.52 40.60

Super Layer 1:Layer 1

Table 1: Superlayer 1 Change of Coordinates From Wire 1 to Wire 2(cm)
Coordinates(cm) Layer 1 Layer 2 Layer 3 Layer 4 Layer 5 Layer 6
Δx 1.22 1.22 1.22 1.22 1.21 1.22
Δy 0.00 0.00 0.00 0.00 0.00 0.00
Δz .55 .56 .57 .57 .57 .57


Using the geometric construction for determining angle theta to wire 2:

tanθ=x+Δxz+Δzθ=arctanx+Δxz+Δz


arctan20.42+1.212243.390.5652=arctan21.632242.8248=arctan0.0891=5.09


This equation can be solved for a hypothetical wire 0, which will allow the wire number to be the multiplicative factor for the change from the starting position.


tanθ=xΔx+nΔxzΔz+nΔzθ=arctanx+nΔxz+nΔz

where

x=20.421.21219.21cm
z=243.39+0.5652243.96cm


θ=arctan19.21+n1.212243.39n0.5652


tanθ=19.21+n1.212243.39n0.5652tanθ=2.14437+957.412430.626n430.626n=957.412tanθ+2.14437


n=957.412tanθ+2.14437+430.626

Using Mathematica, a series expansion about n=0 can be found:

In[1]:= Series[ArcTan[(19.21+1.212 x)/(243.39-0.5652 n)],{n,0,4}]

Out[1]= 0.0787635+0.00513098 n+9.83726*10^-6 n^2-2.61675*10^-8 n^3-2.22826*10^-10 n^4+O[n]^5
θ0.0787635+0.00513098n+9.83726×106n22.61675×108n3


This expression will find the angle theta in radians given the wire number. To convert from radians to degrees, we can multiply by 180 and divide by Pi.

In[2]:= 180*(0.07876354504106763`+0.005130982891104289` n+9.837257652182922`*^-6 n^2-2.616751708660921`*^-8 n^3-2.2282595631625944`*^-10 n^4+O[n]^5)/3.14159625359

Out[2]= 4.51281+0.293983 n+0.000563633 n^2-1.49929*10^-6 n^3-1.2767*10^-8 n^4+O[n]^5


θ4.51281+0.293983n+0.000563633n21.49929×106n3


This tells us that the expression for theta will follow a function that comes from a series expansion. To account for instrument and measurement errors, angle measurements from ced can be used to find a better fit.


Using Mathematica, a line can be fitted to the data collected on the wire number to angle theta correspondence.


Declaring the data set:

In[1]:= data1={{1,4.79},{2,5.09},{62,24.42},{63,24.76},{64,25.10},{78,29.79},{111,40.50},{112,40.82}}

Out[1]= {{1,4.79},{2,5.09},{62,24.42},{63,24.76},{64,25.1},{78,29.79},{111,40.5},{112,40.82}}


Testing for a linear fit:

In[2]:= line1=Fit[data1,{1,n},n]

Out[2]= 4.39975 + 0.32469 n

Examing the range limits for the angle theta for layer 1:


Taking the difference of the upper and lower limits in theta,

Δdegrees=40.824.79=36.03


Dividing by the change in wire numbers (112-1=111), we find

ΔdegreesΔwire number=36.03111 wires 0.325wire number

This would imply that if the wires were evenly placed, their change in angle theta would increase by the factor of .325 degrees for each increase in wire number, starting obviously with wire 1 at 4.79 degrees. In addition, this implies that the bin spacing for each wire would be around .325 degrees in width.


Chercking this, we can find the difference between wires 1 and 2,

ΔdegreeΔwire number=5.094.79wire number=.3wire number

Similarly, finding the difference between wires 111 and 112,

ΔdegreeΔwire number=40.8240.51wire number=.31wire number


These differing values show that the bin width is not uniform in length, therefore a first order, linear fit, will not suffice.



Testing for a quadratic fit:

In[3]:= quad1=Fit[data1,{1,n,n^2},n]

Out[3]= 4.45564 +0.32015 n+0.0000417787 n^2

The quadratic fit does not work since it's first derivative

θΔθ=.3250726.83308 n

does not give the same spacing between low and high values of n as seen in the ced data. The coefficient near the first order will have to smaller than .31 to find a correlation that would agree.

Testing for a polynomial of degree 3 fit:

In[4]:= polynomial1=Fit[data1,{1,n,n^2,n^3},n]

Out[4]= 4.49876 +0.293001 n+0.000679074 n^2-3.57132*10^-6 n^3


This fit best matches the data found in ced

θ4.49876+0.293001n+0.000679074n23.57132×106n3

As discussed earlier, taking the 1st derivative of this function will give us the spacing of the bins as a function of wire number.

θ0.293001+0.00135815n0.000010714n2


The derivative of this function then will tell us where the bin spacing is at a minimum and a maximum.

θ.0010219761.61514×105n


0.001358150.0000214279n=0Bin Spacing Maximum at n=63.3822

Comparing this maximum, we can see from Table 3 that near the maximum of 63 are seperated by larger distances than at n=1 or n=112. This is the midpoint of the plane as seen in the geometry file.

Binning based on wire numbers

The bin size based on wire number will need to be a uniform width of 1, as in an increment of 1 between the integer values of the wires. This uniformity in bin size based on wire numbers is not uniform when viewed by the angle theta due to the Drift Chamber geometry discussed earlier.

Modifying evioreader


Layer1bins.png


gStyle->SetStripDecimals(kTRUE);
TF1 *fit_function=new TF1("fit_function","[0]+[1]*x+[2]*x*x+[3]*x*x*x",4.49876,41.12592);
fit_function->SetParameters(4.49876,0.293001,0.000679074,-0.00000357132);
TGaxis *A1 = new TGaxis(0,5000,113,5000,"fit_function",510,"-");
A1->SetTitle("Angle Theta(degrees)");
A1->Draw();


Layer1binWeighted.png

Using the expression for n in terms of Theta:

n=957.412tanθ+2.14437+430.626


This relationship can be used to multiply each Moller Scattering angle theta in the lab frame, with it's differential cross-section weight, to find the Moller differential cross-section as a function of wire number in the lab frame.


MolThetaWireWeighted.png


MolThetaWireWeightedAdjusted.png


TheoryDCbinsWire.png

Moller Occupancy Rate

Comparing Rates

Using the values from Whitney:

Whitney values.png

For a 5cm target of LH2:

ρtarget×ltarget=70.85kg1m3×1mole2.02g×1000g1kg×6.022×1023molecules LH21mole2atoms1 molecule LH2×1m3(100cm)3×5cm=2.11×1023×1024cm2barn=2.11×101 barns1


Using the beam current of 100nA,

Φbeam=100×109 A1×1 C1 A×1 e1 s×11.602×1019C6.2422×1011 1s=Φe


Given the beam Luminosity of:

L=1.32×1035cm2s1024cm2barn=1.32×1011barns=Φbeam ρ ltarget

We can check to make sure the density makes sense

ρtarget=1.32×1035Φbeam ltargetcm2s=1.32×10356.24×1011 5cm3=4.23×1022cm3


ρtarget=70.85kg1m3×1mole2.02g×1000g1kg×6.022×1023molecules LH21mole×1m3(100cm)32atoms1 molecule LH2=4.23×1022cm3


Using the values from Whitney :


https://wiki.iac.isu.edu/index.php/CLAS12_RateEst_byWA

Rates
Energy 6 GeV 11 GeV
Process (nb) (nb)
Moller 22773001 75008636
DIS + radiative tail 128 83
Elastic e-p 5511220 3670740
Elastic radiative tail 24705 12944
π0 electro-production 14802 17908
π0 photo-production 569 852
π+ electro-production 4032 5536
π+ photo-production 282 487
π− electro-production 2806 3843
π− photo-production 199 342
Total 2.83317E7 7.87214E7



RTotal scattered=σTotal scatteredL=7.87×102 barn 1.33×1011barns=1.05×1010TotalScattereds


RMoller=σMollerL=7.50×102 barn 1.33×1011barns=9.97×109Mollers

Similarly,


NTotal scattered=RTotal scatteredt


NMoller=RMollert

File:CLAS12ExpWS WA.pdf

Whitney 2.pngWhitney 3.png


Whitney 4.png


σ=RL=dNdt1L


t0dt=N01σLdN


tTotal scattered=NTotal scatteredσTotal scatteredΦρ=1000000 barns7.87×1021.33×1011 barn=9.54×105s



N0=ΔtRTotal scattered=ΔtNTotal scatteredtTotal scattered=500×109 s1×1060.0954×103 s=5240


Occupancy=NHitsN0=NHitsΔtRTotal scattered=tTotal scatteredNHitsNTotal scatteredΔt=


(Number of hitsMoller electron)(Moller electronsincidents electron)(incident electronssec)

GEANT Simulations

https://wiki.iac.isu.edu/index.php/Converting_to_barns

https://wiki.iac.isu.edu/index.php/Check_Differential_Cross-Section

Converting the number of electrons scattered per angle theta to barns, we can use the relation

L=Rscatteredσ=Φbeam ρ 


σ=RscatteredL=RscatteredΦbeam ρ =RscatteredRincident ρ =NscatteredΔtΔtNincident1ρ


This gives, for LH2:

ρtarget×ltarget=70.85kg1m3×1mole2.02g×1000g1kg×6×1023molecule1mole×2 atomsmolecule×1m3(100cm)3×1cm×1024cm2barn=4.2×102barns1


Since the time window must be the same for the amount scattered as for the amount incident, this can be viewed as the probablity of one incident electron producing a Moller event.

From earlier simulations for random angle Phi, we know that the full range of Theta is limited depending on the target material.


MollerThetaLab 4e7 LH2 11GeV.pngMollerThetaLab 4e7 NH3 11GeV.png


MollerThetaLab 4e7 LH2 11GeV Detector.pngMollerThetaLab 4e7 NH3 11GeV Detector.png


σ=NscatteredL=NscatteredNincident ρ =97559340000000 4.2×102barns1=0.0244.2×102barns1=0.58barns


σ=NscatteredLL=Nscatteredσ


L=9755930.58barns=1.68×106electronsbarns


Moller events occur for about 2.5% of the incident electrons on a LH2 target. We can assume the number of Moller events that occur within the DC range to be around 30% of the total Moller events occuring for the number of incident electrons for LH2 as well. Since the differential cross-section over the angel theta is proportional to the differtial cross-section over wire number we can dividing the Moller differential cross-section by the product of the density and length of the target material

Isotropic Weighted Distribution

Assuming a 1cm long target of LH2 where around 2% of the incident electrons will result in a Moller electron,

TH1F *Combo=new TH1F("Layer1binsMollerRate","Layer1binsMollerRate",113,0,113);
Combo->Add(Layer1binsWeighted,23.8);
Combo->Draw();
Layer1binsMollerRate.png


2003912 Moller Events in Range.30 Moller Events in Range per Moller Electron=6.68×106 Moller electrons


6.68×106 Moller electrons.02 Moller Events  per Incident Electron=3.34×108 Incident electrons


σ=NMollerNincidentρ=.02 barn4.2×102=.48 barn


L=Nincident ρ=3.34×108 Incident electrons4.2×102=1.40×107 electronsbarns


Assuming a 5cm long target of LH2 where around 2% of the incident electrons will result in a Moller electron,

TH1F *Combo=new TH1F("Layer1binsMollerRate","Layer1binsMollerRate",113,0,113);
Combo->Add(Layer1binsWeighted,4.76);
Combo->Draw();
Layer1binsMollerRate 2.png


400782 Moller Events in Range.30 Moller Events in Range per Moller Electron=1.34×106 Moller electrons


1.34×106 Moller electrons.02 Moller Events  per Incident Electron=6.67×107 Incident electrons


σ=NMollerNincidentρ=.02 barn2.1×101=.095 barn


L=Nincident ρ=6.67×107 Incident electrons2.1×101=1.40×107 electronsbarns

back