Old work

From New IAC Wiki
Jump to navigation Jump to search

Moller Differential Cross Section

Using the equation from [1]

dσdΩ1=e48E2{1+cos4(θ2)sin4(θ2)+1+sin4(θ2)cos4(θ2)+2sin2(θ2)cos2(θ2)}


where α=e2cwith=c=1 and θ=θ1=θ2


This can be simplified to the form


dσdΩ1=α24E2(3+cos2θ)2sin4θ

Plugging in the values expected for 2 scattering electrons:



α2=5.3279×105


E106.031MeV


Using unit analysis on the term outside the parantheses, we find that the differential cross section for an electron at this momentum should be around

5.3279×1054×1.124×1016eV2=1.18×1021eV2=1.18×10211eV2×1×10181×1018=.0012GeV2

Using the conversion of


11GeV2=.3894mb


.00121GeV2=.0012111GeV2=.0012×.3894mb=.467×103mb



We find that the differential cross section scale is dσdΩ.5×103mb=.5μb

Different p21 Values

Using the conversion of


11GeV2=.3894mb


σ=dσ=dσdΩ2dΩ


The range of the detector is considered to be .10θ.87,πϕπ


σ=2.531.611ππdσdΩ2sinθdθdϕ


σ=2π2.531.611dσdΩ2sinθdθ


σ=2π(1.638)dσdΩ2


σ=(10.294)dσdΩ2


Differential Cross Section Scale for Different p21 Values
p2(MeV) \frac{d\sigma}{d\Omega_{2}^'}(eV^{-2}) \frac{d\sigma}{d\Omega_{2}^'}(GeV^{-2}) \frac{d\sigma}{d\Omega_{2}^'}(mb) \frac{d\sigma}{d\Omega_{2}^'}(b) σ(b)
10000 9.357×1011 9.357×107 3.644×107 3.644×104 3.751×105
5000 3.743×1010 3.743×108 1.458×108 1.458×105 1.501×106
1000 9.357×109 9.357×109 3.644×109 3.644×106 3.751×107
500 3.743×108 3.743×1010 1.458×1010 1.458×107 1.501×108

CM to Lab Frame

We can substitute in for θ


dσdΩ1=α24E2(3+cos2θ)2sin4θ


dσdΩ1=α24E2(3+cos2θ)2sin(θ)sin(θ)sin(θ)sin(θ)


Using,

sin(θ)=sin(θ2)=p2p2 sin(θ2)


2σ(E,θ,ϕ)EΩ=2σ(E,θ,ϕ)EΩpp
dσdΩ1=α24E2(3+cos2θ)2p2p2 sin(θ2)p2p2 sin(θ2)p2p2 sin(θ2)p2p2 sin(θ2)



dσdΩ1=α2p424E2p42(3+cos2θ)2sin4(θ2)


Now, using the trigometric identity,

sin2t+cos2t=1cos2(θ)=1sin2(θ)


dσdΩ1=α2p424E2p42(3+1sin2(θ))2sin4(θ2)


dσdΩ1=α2p424E2p42(4sin(θ)sin(θ))2sin4(θ2)


dσdΩ1=α2p424E2p42(4p2p2 sin(θ2)p2p2 sin(θ2))2sin4(θ2)


dσdΩ1=α2p424E2p42(4p22p22 sin2(θ2))2sin4(θ2)


dσdΩ1=α2p424E2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)


Substituting,

p2=E22m2



dσdΩ1=α2(E22m2)44E2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)


dσdΩ1=α2(E22m2)24E2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)


Substituting in for m, E2*,and E* α2=5.3279×105

dσdΩ1=(5.3279×105(((53.015MeV)2(.511MeV)2)24×(106.031MeV)2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)


dσdΩ1=9.357×109eV2p42(168p22p22 sin2(θ2)+p42p42 sin4(θ2))sin4(θ2)