Difference between revisions of "Forest UCM MiNF"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Line 29: | Line 29: | ||
: <math>\Rightarrow \ddot {\vec r} = \ddot {\vec {r}_0} - \dot \vec V= \ddot {\vec {r}_0} -  \vec A </math>  | : <math>\Rightarrow \ddot {\vec r} = \ddot {\vec {r}_0} - \dot \vec V= \ddot {\vec {r}_0} -  \vec A </math>  | ||
| − | : <math>\Rightarrow m\ddot {\vec r} = m\ddot {\vec {r}_0} - m \vec A= \vec F -  m\vec A<= \vec F -  \vec {F}_{\mbox inertial}}</math>  | + | : <math>\Rightarrow m\ddot {\vec r} = m\ddot {\vec {r}_0} - m \vec A= \vec F -  m\vec A<= \vec F -  \vec {F}_{\mbox {inertial}}</math>  | 
where    | where    | ||
Revision as of 13:23, 3 November 2014
Mechanics in Noninertial Reference Frames
Linearly accelerating reference frames
Let represent an inertial reference frame and \mathcal S represent an noninertial reference frame with acceleration relative to .
Ball thrown straight up
Consider the motion of a ball thrown straight up as viewed from .
Using a Galilean transformation (not a relativistic Lorentz transformation) 
At some instant in time the velocities add like
where
- = velocity of moving frame with respect to at some instant in time
 
taking derivative with respect to time
where
- inertial force