Difference between revisions of "ISU Coloq 11-3-2014"

From New IAC Wiki
Jump to navigation Jump to search
Line 73: Line 73:
  
 
== Definition of Missing Mass==
 
== Definition of Missing Mass==
 +
===Inclusive Missing mass W**2===
  
 +
Inelastic scattering (Energy is not conserved but absorbed from the momentum transfer)
 +
 +
 +
<math>P_e^{\mu} \equiv (E_i,\vec{k}_i)</math>
 +
<math>\left(P_e^{\mu}\right)^{\prime} \equiv (E_f,\vec{k}_f)</math>
 +
<math>P_p^{\mu} \equiv (M_p,0)</math>
 +
<math>\left(P_p^{\mu}\right)^{\prime} \equiv (E_X,\vec{k}_X)</math>
 +
 +
;4-momentum conservation:<math>P_e^{\mu} + P_p^{\mu}  = \left(P_e^{\mu}\right)^{\prime}  + \left(P_p^{\mu}\right)^{\prime}</math>
 +
 +
 +
<math>\left(P_p^{\mu}\right)^{\prime}  \left(P_{\mu}^p\right)^{\prime} = [P_e^{\mu} +  P_p^{\mu}  - \left(P_e^{\mu}\right)^{\prime}  ][P^e_{\mu} +  P^p_{\mu}  - \left(P^e_{\mu}\right)^{\prime}  ]</math>
 +
 +
<math>E_X^2 - P_X^2 \equiv W^2 = (E_i^2 - k_i^2) + (E_f^2-k_f^2) + M_p^2 + 2M_p(E_i - E_f) -2(E_iE_f-\vec{k_i}\cdot \vec{k_f})</math>
 +
 +
:<math>W^2=M_p^2 + 2M_p(E_i-E_f) -Q^2 \equiv </math>Invariant Missing Mass = mass of the intermediate state that was created.
 +
 +
 +
[[File:CLAS_InelasticSpectrum_2012.png | 200 px]]
  
 
== Spin 1/2 and 3/2 final states==
 
== Spin 1/2 and 3/2 final states==

Revision as of 18:12, 11 October 2014

electron scattering (collisions)

Elastic Collisions: Conserve P and E

Inelastic : Only Conserve P

Definition of Momentum Transfer

TF Elastic e-p Feynman.png

Using Ryder 4-momentum tensor convention: [math]P_{\mu} \equiv (E/c, -\vec{p}) \;\;\;\;\; P^{\mu} \equiv (E/c, \vec{p})[/math]

[math]q_\mu \equiv (\omega, \vec{q})[/math] [math]k^i_\mu \equiv (E_i, \vec{k_i})[/math] [math]k^f_\mu \equiv (E_f, \vec{k_f})[/math]

Conservation of Momentum
[math] k^i_\mu =q_\mu + k^f_\mu [/math]
Momentum Transfer
[math] q_\mu =k^i_\mu - k^f_\mu [/math]
Momentum Transfer Squared
[math] -Q^2 = q^2 = q_\mu q^{\mu} =(E_i-E_f)^2 - (\vec{k}_i - \vec{k}_f) \cdot (\vec{k}_i - \vec{k}_f) [/math]
[math]= m_i^2 + m_f^2 -2E_iE_f + 2\left | \vec{k}_i\right | \left | \vec{k}_f\right | cos(\theta)[/math]
[math]=-4E_iE_f \sin^2(\theta/2) \;\;\; m_i = m_f \ll E_i \mbox{ and } E \approx \left | \vec{k}_i\right |[/math]
[math]Q^2 =4E_iE_f \sin^2(\theta/2) \gt 0[/math] A space-like scattering event

Space-like interval: Two events are separated by a space like interval then there isn't enough time passing between them to allow a cause-effect relationship because a photon can't traverse the distance. This means that there is no reference frame that may be used to describe the event as happening at the same spatial location but there is a frame that describes them happening at the same time. If the spacetime interval between the two events is defined as s[math]^2 = (\Delta r)^2 - (c\Delta t)^2[/math] then [math]s^2 \gt 0[/math] for a space-like interval


Time-like interval: Two events are separated by a time like interval if enough time passes between them to allow a cause-effect relationship. This means that there is no reference frame that may be used to describe the event as happening at the same time but there is one that describes them happening at the same spatial location. If the spacetime interval between the two events is defined as s[math]^2 = (\Delta r)^2 - (c\Delta t)^2[/math] then [math]s^2 \lt 0[/math] for a time-like interval

The Delta Resonance

EpDeltaFeynman2012.png

Decay Modes: [math]ep \rightarrow \;\; \left \{ {N \pi \;\;\; 99.5% \atop p \gamma \;\;\; 0.5% } \right .[/math]


[math]\sigma = \lt \Delta^+ | V_{\mu}^3| p\gt [/math]

[math]V_{\mu}^3 =[/math] Vector current of the virtual photon exchange

01092012 epnipiTrack.pngCal01092012 epnipiCal.png

4-Momentum vector definition using Ryder convention

[math]P_{\mu} \equiv \left ( \frac{E}{c} , - \vec p \right )[/math]
[math]P^{\mu} \equiv \left ( \frac{E}{c} , \vec p \right )[/math]
[math]P_{\mu} P^{\mu} = \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2[/math] if you define the speed of light as unity


Note
Other conventions used by Perkins
[math]P_{\mu} \equiv \left ( \vec p, -E \right )[/math]
[math]P^{\mu} \equiv \left ( \vec p , E\right )[/math]

or Kollen

[math]P_{\mu} \equiv \left ( \vec p, iE \right )[/math]
[math]P^{\mu} \equiv \left ( \vec p , iE\right )[/math]


Momentum transfer is defined as

[math]q_{\mu} \equiv ( \omega, \vec q) = P^i_{\mu} - P^f_{\mu}[/math] : conservation of momentum
[math]q_{\mu}q^{\mu} = (E_i - E_f)^2 - (\vec {P}_i - \vec{P}_f) \cdot (\vec {P}_i - \vec{P}_f)[/math]
[math]= m_i^2 +m_f^2 - 2E_iE_f + 2 \left | \vec {P}_i \right | \left | \vec {P}_f \right |[/math]

Definition of Missing Mass

Inclusive Missing mass W**2

Inelastic scattering (Energy is not conserved but absorbed from the momentum transfer)


[math]P_e^{\mu} \equiv (E_i,\vec{k}_i)[/math] [math]\left(P_e^{\mu}\right)^{\prime} \equiv (E_f,\vec{k}_f)[/math] [math]P_p^{\mu} \equiv (M_p,0)[/math] [math]\left(P_p^{\mu}\right)^{\prime} \equiv (E_X,\vec{k}_X)[/math]

4-momentum conservation
[math]P_e^{\mu} + P_p^{\mu} = \left(P_e^{\mu}\right)^{\prime} + \left(P_p^{\mu}\right)^{\prime}[/math]


[math]\left(P_p^{\mu}\right)^{\prime} \left(P_{\mu}^p\right)^{\prime} = [P_e^{\mu} + P_p^{\mu} - \left(P_e^{\mu}\right)^{\prime} ][P^e_{\mu} + P^p_{\mu} - \left(P^e_{\mu}\right)^{\prime} ][/math]

[math]E_X^2 - P_X^2 \equiv W^2 = (E_i^2 - k_i^2) + (E_f^2-k_f^2) + M_p^2 + 2M_p(E_i - E_f) -2(E_iE_f-\vec{k_i}\cdot \vec{k_f})[/math]

[math]W^2=M_p^2 + 2M_p(E_i-E_f) -Q^2 \equiv [/math]Invariant Missing Mass = mass of the intermediate state that was created.


200 px

Spin 1/2 and 3/2 final states

DoubleSpinOneHalfScattering.jpeg DoubleSpinThreeHalfsScattering.jpeg

References

Theory

Phenomenological

NP, B291(1987)793; NP, B346(1990)1;

    Z. Phys. C56(1992)493;
    Eur. Phys. J. C44  (2005)219;
    hep-ph/0205123
    arXiV:1310.5285


QCD inspired

NP, B483(1997)291; NP, B484(1997)265;

    PRL 85(2000)3591; PRL 89(2002)162301;
    JHEP 0211(2002)44; NP, A720(2003)131; 
    Eur. Phys. J. C30(2003)213; arXiV:09073534;
    NP, A761(2005)67; PR, C81(2010)024902

Hybrids

PYTHIA + BUU simulation

     PR, C70(2004)054609; NP, A801(2008)68

Experiment

keith's 2012 talk in Italy on EG1-DVCS

Unpolarized

http://link.springer.com/article/10.1007%2FJHEP04%282014%29005


File:AndyMiller 200TalkAtDESY.pdf 2002 talk by CA Miller at DESY


File:Dueren.98.055.pdf 1998 Duren talk

2013 APS talk on EG1-DVCS

July 30,2014 talk by XingLong Li at Heremes File:XingLongLi TalkOnPACIAEmdoelForSIDIS.pdf from

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=31&ved=0CB0QFjAAOB4&url=http%3A%2F%2Fhadron2014.csp.escience.cn%2Fdct%2Fattach%2FY2xiOmNsYjpwZGY6MzAwMjA%3D&ei=UPw1VNiQAdHlsATA7IHwDw&usg=AFQjCNH5yyek_zTJ22TZq0Dw_YLUeAxe2Q


Xiangs proposal for CLAS12 measurement of SIDIS Xsections see Fig. 1


Semi-inclusive deep inelastic scattering at small transverse momentum


Naomi's SIDIS Hermes talk from 2011 at NNPSS11


1986 article ob QCD effects in semi-inclusive deep inelastic scattering from a polarized target by P. Chiappetta J. -Ph. Guillet

theses

2014 Ph.D thesis of Naomi's student Sylvester Joosten

http://www.google.com/url?sa=t&rct=j&q=&esrc=s&source=web&cd=7&cad=rja&uact=8&ved=0CFYQFjAG&url=http%3A%2F%2Fwww.nikhef.nl%2Fpub%2Fservices%2Fbiblio%2Ftheses_pdf%2Fthesis_E_Garutti.pdf&ei=Osw3VJbSAY27ogSx3IDwDQ&usg=AFQjCNENlNdgPr6dgfq9OanlL8cUnYHmMQ&bvm=bv.77161500,d.cGU


TF_SIDIS_Physics