Difference between revisions of "ISU Coloq 11-3-2014"

From New IAC Wiki
Jump to navigation Jump to search
Line 33: Line 33:
 
:<math>q_{\mu} \equiv ( \omega, \vec q) = P^i_{\mu} - P^f_{\mu}</math>  : conservation of momentum  
 
:<math>q_{\mu} \equiv ( \omega, \vec q) = P^i_{\mu} - P^f_{\mu}</math>  : conservation of momentum  
  
: <math>q_{\mu}q^{\mu} = (E_i - E_f)^2 - (vec {P}_i - \vec{P}_f) \cdot  (vec {P}_i - \vec{P}_f)</math>  
+
: <math>q_{\mu}q^{\mu} = (E_i - E_f)^2 - (\vec {P}_i - \vec{P}_f) \cdot  (\vec {P}_i - \vec{P}_f)</math>  
 +
:: <math>= m_i^2 +m_f^2 - 2E_iE_f + 2 \left | \vec {P}_i  \right | \left | \vec {P}_f  \right |</math>
 +
 
 +
 
 +
 
  
 
[[TF_SIDIS_Physics]]
 
[[TF_SIDIS_Physics]]

Revision as of 19:59, 8 October 2014

Elastic -vs- Inelastic Collisisons

Elastic Collisions: Conserve P and E

Inelastic : Only Conserve P

Definition of Mission Mass

Definition of Momentum Transfer

4-Momentum vector definition using Ryder convention

[math]P_{\mu} \equiv \left ( \frac{E}{c} , - \vec p \right )[/math]
[math]P^{\mu} \equiv \left ( \frac{E}{c} , \vec p \right )[/math]
[math]P_{\mu} P^{\mu} = \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2[/math] if you define the speed of light as unity


Note
Other conventions used by Perkins
[math]P_{\mu} \equiv \left ( \vec p, -E \right )[/math]
[math]P^{\mu} \equiv \left ( \vec p , E\right )[/math]

or Kollen

[math]P_{\mu} \equiv \left ( \vec p, iE \right )[/math]
[math]P^{\mu} \equiv \left ( \vec p , iE\right )[/math]


Momentum transfer is defined as

[math]q_{\mu} \equiv ( \omega, \vec q) = P^i_{\mu} - P^f_{\mu}[/math] : conservation of momentum
[math]q_{\mu}q^{\mu} = (E_i - E_f)^2 - (\vec {P}_i - \vec{P}_f) \cdot (\vec {P}_i - \vec{P}_f)[/math]
[math]= m_i^2 +m_f^2 - 2E_iE_f + 2 \left | \vec {P}_i \right | \left | \vec {P}_f \right |[/math]



TF_SIDIS_Physics