Difference between revisions of "ISU Coloq 11-3-2014"
Jump to navigation
Jump to search
Line 12: | Line 12: | ||
4-Momentum vector definition using Ryder convention | 4-Momentum vector definition using Ryder convention | ||
− | :<math>P_{\mu} equiv \left ( \frac{E}{c} , - \vec p \right )</math> | + | :<math>P_{\mu} \equiv \left ( \frac{E}{c} , - \vec p \right )</math> |
− | :<math>P^{\mu} equiv \left ( \frac{E}{c} , \vec p \right )</math> | + | :<math>P^{\mu} \equiv \left ( \frac{E}{c} , \vec p \right )</math> |
:<math>P_{\mu} P^{\mu} = \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2</math> if you define the speed of light as unity | :<math>P_{\mu} P^{\mu} = \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2</math> if you define the speed of light as unity | ||
Line 20: | Line 20: | ||
;Note: Other conventions used by Perkins | ;Note: Other conventions used by Perkins | ||
− | :<math>P_{\mu} equiv \left ( \vec p, -E \right )</math> | + | :<math>P_{\mu} \equiv \left ( \vec p, -E \right )</math> |
− | :<math>P^{\mu} equiv \left ( \vec p , E\right )</math> | + | :<math>P^{\mu} \equiv \left ( \vec p , E\right )</math> |
or Kollen | or Kollen | ||
− | :<math>P_{\mu} equiv \left ( \vec p, iE \right )</math> | + | :<math>P_{\mu} \equiv \left ( \vec p, iE \right )</math> |
− | :<math>P^{\mu} equiv \left ( \vec p , iE\right )</math> | + | :<math>P^{\mu} \equiv \left ( \vec p , iE\right )</math> |
[[TF_SIDIS_Physics]] | [[TF_SIDIS_Physics]] |
Revision as of 19:50, 8 October 2014
Elastic -vs- Inelastic Collisisons
Elastic Collisions: Conserve P and E
Inelastic : Only Conserve P
Definition of Mission Mass
Definition of Momentum Transfer
4-Momentum vector definition using Ryder convention
- if you define the speed of light as unity
- Note
- Other conventions used by Perkins
or Kollen