Difference between revisions of "ISU Coloq 11-3-2014"

From New IAC Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
4-Momentum vector definition using Ryder convention
 
4-Momentum vector definition using Ryder convention
  
:<math>P_{\mu} equiv \left ( \frac{E}{c} , - \vec p \right )</math>
+
:<math>P_{\mu} \equiv \left ( \frac{E}{c} , - \vec p \right )</math>
:<math>P^{\mu} equiv \left ( \frac{E}{c} , \vec p \right )</math>
+
:<math>P^{\mu} \equiv \left ( \frac{E}{c} , \vec p \right )</math>
  
 
:<math>P_{\mu} P^{\mu} =  \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2</math>  if you define the speed of light as unity
 
:<math>P_{\mu} P^{\mu} =  \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2</math>  if you define the speed of light as unity
Line 20: Line 20:
 
;Note: Other conventions used by Perkins  
 
;Note: Other conventions used by Perkins  
  
:<math>P_{\mu} equiv \left (  \vec p, -E  \right )</math>
+
:<math>P_{\mu} \equiv \left (  \vec p, -E  \right )</math>
:<math>P^{\mu} equiv \left ( \vec p , E\right )</math>
+
:<math>P^{\mu} \equiv \left ( \vec p , E\right )</math>
  
 
or Kollen
 
or Kollen
  
:<math>P_{\mu} equiv \left (  \vec p, iE  \right )</math>
+
:<math>P_{\mu} \equiv \left (  \vec p, iE  \right )</math>
:<math>P^{\mu} equiv \left ( \vec p , iE\right )</math>
+
:<math>P^{\mu} \equiv \left ( \vec p , iE\right )</math>
  
  
 
[[TF_SIDIS_Physics]]
 
[[TF_SIDIS_Physics]]

Revision as of 19:50, 8 October 2014

Elastic -vs- Inelastic Collisisons

Elastic Collisions: Conserve P and E

Inelastic : Only Conserve P

Definition of Mission Mass

Definition of Momentum Transfer

4-Momentum vector definition using Ryder convention

[math]P_{\mu} \equiv \left ( \frac{E}{c} , - \vec p \right )[/math]
[math]P^{\mu} \equiv \left ( \frac{E}{c} , \vec p \right )[/math]
[math]P_{\mu} P^{\mu} = \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2[/math] if you define the speed of light as unity


Note
Other conventions used by Perkins
[math]P_{\mu} \equiv \left ( \vec p, -E \right )[/math]
[math]P^{\mu} \equiv \left ( \vec p , E\right )[/math]

or Kollen

[math]P_{\mu} \equiv \left ( \vec p, iE \right )[/math]
[math]P^{\mu} \equiv \left ( \vec p , iE\right )[/math]


TF_SIDIS_Physics