Difference between revisions of "ISU Coloq 11-3-2014"

From New IAC Wiki
Jump to navigation Jump to search
Line 15: Line 15:
 
:<math>P^{\mu} equiv \left ( \frac{E}{c} , \vec p \right )</math>
 
:<math>P^{\mu} equiv \left ( \frac{E}{c} , \vec p \right )</math>
  
:<math>P_{\mu} P^{\mu} =  \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2</math>
+
:<math>P_{\mu} P^{\mu} =  \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2</math> if you define the speed of light as unity
  
 +
 +
;Note: Other conventions used by Perkins
 +
 +
:<math>P_{\mu} equiv \left (  \vec p, -E  \right )</math>
 +
:<math>P^{\mu} equiv \left ( \vec p , E\right )</math>
 +
 +
or Kollen
 +
 +
:<math>P_{\mu} equiv \left (  \vec p, iE  \right )</math>
 +
:<math>P^{\mu} equiv \left ( \vec p , iE\right )</math>
  
  
 
[[TF_SIDIS_Physics]]
 
[[TF_SIDIS_Physics]]

Revision as of 19:45, 8 October 2014

Elastic -vs- Inelastic Collisisons

Elastic Collisions: Conserve P and E

Inelastic : Only Conserve P

Definition of Mission Mass

Definition of Momentum Transfer

4-Momentum vector definition using Ryder convention

[math]P_{\mu} equiv \left ( \frac{E}{c} , - \vec p \right )[/math]
[math]P^{\mu} equiv \left ( \frac{E}{c} , \vec p \right )[/math]
[math]P_{\mu} P^{\mu} = \left ( \frac{E}{c}\right )^2 - \vec p^2 = E^2-p^2 = m^2[/math] if you define the speed of light as unity


Note
Other conventions used by Perkins
[math]P_{\mu} equiv \left ( \vec p, -E \right )[/math]
[math]P^{\mu} equiv \left ( \vec p , E\right )[/math]

or Kollen

[math]P_{\mu} equiv \left ( \vec p, iE \right )[/math]
[math]P^{\mu} equiv \left ( \vec p , iE\right )[/math]


TF_SIDIS_Physics