Difference between revisions of "Forest UCM Osc Resonance"
Jump to navigation
Jump to search
Line 1: | Line 1: | ||
− | Oscillators | + | Oscillators driven by a source in resonance |
+ | |||
+ | :<math> \ddot x + 2 \beta \dot x + \omega^2_0x = f(t)</math> | ||
+ | |||
+ | |||
+ | ==Complete Solution for the Sinusoidally Driven Damped oscillator== | ||
+ | |||
+ | :<math>x(t) =x_h + x_p = C_1 e^{r_1 t} + C_2 e^{r_2 t} + A \cos(\omega t-\delta)</math> | ||
+ | |||
+ | where | ||
+ | |||
+ | :<math>r_1 = - \beta + \sqrt{\beta^2 - \omega_0^2}</math> | ||
+ | :<math>r_2 = - \beta + \sqrt{\beta^2 + \omega_0^2}</math> | ||
+ | :<math>A=\frac{f_0} { \sqrt{(\omega_0^2 - \omega^2)^2 + 4 \beta^2 \omega^2 }}</math> | ||
+ | :<math>\delta = \tan^{-1}\left ( \frac{2 \beta \omega}{(\omega_0^2- \omega^2)} \right )</math> | ||
− | |||
Revision as of 12:15, 8 October 2014
Oscillators driven by a source in resonance
Complete Solution for the Sinusoidally Driven Damped oscillator
where