Difference between revisions of "Forest UCM Osc Damped"
Jump to navigation
Jump to search
Line 74: | Line 74: | ||
: <math>\sqrt{\beta^2 -\omega^2_0} =\sqrt{(-1)(\omega^2_0- \beta^2 } = i \sqrt{\omega^2_0- \beta^2 } \equiv i \omega_1</math> | : <math>\sqrt{\beta^2 -\omega^2_0} =\sqrt{(-1)(\omega^2_0- \beta^2 } = i \sqrt{\omega^2_0- \beta^2 } \equiv i \omega_1</math> | ||
− | + | ||
:<math> x= \left ( C_1 e^{ \sqrt{\beta^2 -\omega^2_0} t} + C_2 e^{ -\sqrt{\beta^2 -\omega^2_0} t} \right) e^{- \beta t} </math> | :<math> x= \left ( C_1 e^{ \sqrt{\beta^2 -\omega^2_0} t} + C_2 e^{ -\sqrt{\beta^2 -\omega^2_0} t} \right) e^{- \beta t} </math> | ||
+ | ::<math> = \left ( C_1 e^{i\omega_1 t} + C_2 e^{ -i\omega_1t} \right) e^{- \beta t} </math> | ||
==Over damped Oscillator== | ==Over damped Oscillator== |
Revision as of 13:31, 5 October 2014
1-D Damped Oscillations
Newton's 2nd Law
As in the case of air resistance, assume there is frictional force proportional to the velocity of the oscillation body.
- : in 1-D
or
or
let
- undamped oscillation frequency
- damping constant
then
Solve for the Equation of Motion
As see in section Forest_UCM_Osc_SHM#Equation_of_motion, you can determine solutions to the above by writing the analogous auxilary equation:
Setting the term in parentheses to zero and using the quadratic formula
You have change the second order differential equation into two first order differential equations
constructing a complete solution from the two solutions (orthogonal functions) above.
Undamped oscillator
If
= 0Then
- Forest_UCM_Osc_SHM#Equation_of_motion the SHM solution derived before at
Under damped Oscillator
In this case the term
Over damped Oscillator
Critically damped Oscillator