Difference between revisions of "Forest UCM Osc Damped"

From New IAC Wiki
Jump to navigation Jump to search
Line 88: Line 88:
 
:<math>\beta = \omega_0</math>
 
:<math>\beta = \omega_0</math>
  
 +
 +
 +
:<math>  x=  \left ( C_1 e^{ \sqrt{\beta^2 -\omega^2_0} t} + C_2 e^{ -\sqrt{\beta^2 -\omega^2_0} t} \right) e^{- \beta t} </math>
  
 
[[Forest_UCM_Osc#Damped_Oscillations]]
 
[[Forest_UCM_Osc#Damped_Oscillations]]

Revision as of 13:30, 5 October 2014

1-D Damped Oscillations

Newton's 2nd Law

As in the case of air resistance, assume there is frictional force proportional to the velocity of the oscillation body.


\sum \vec{F}_{ext} = -k\vec r - b \vec \dot v = m \vec \ddot r
Fext=kxb˙x=m¨x: in 1-D

or

m¨x+kx+b˙x=0

or

¨x+kmx+bm˙x=0


let

km=ω20= undamped oscillation frequency
bm2β= damping constant

then

¨x+2β˙x+ω20x=0

Solve for the Equation of Motion

As see in section Forest_UCM_Osc_SHM#Equation_of_motion, you can determine solutions to the above by writing the analogous auxilary equation:

(O2+2βO+ω20)x=0Oddt

Setting the term in parentheses to zero and using the quadratic formula

O=2β±(2β)24ω202=β±β2ω20
(O+β+β2ω20)(O+ββ2ω20)x=0


You have change the second order differential equation into two first order differential equations

(ddt+β+β2ω20)x=0
dxx=(ββ2ω20)dt
x=e(ββ2ω20)t


(ddt+ββ2ω20)x=0
dxx=(β+β2ω20)dt
x=e(β+β2ω20)t

constructing a complete solution from the two solutions (orthogonal functions) above.

x=(C1eβ2ω20t+C2eβ2ω20t)eβt

Undamped oscillator

If β = 0

Then

x=(C1eβ2ω20t+C2eβ2ω20t)eβt
=(C1eiω0t+C2eiω0t) the SHM solution derived before at Forest_UCM_Osc_SHM#Equation_of_motion

Under damped Oscillator

β<ω0

In this case the term

β2ω20=(1)(ω20β2=iω20β2\eqiviω1
O=2β±(2β)24ω22=β±β2ω2


x=(C1eβ2ω20t+C2eβ2ω20t)eβt

Over damped Oscillator

β>ω0

Critically damped Oscillator

β=ω0


x=(C1eβ2ω20t+C2eβ2ω20t)eβt

Forest_UCM_Osc#Damped_Oscillations