Difference between revisions of "Forest UCM Osc Damped"
Jump to navigation
Jump to search
Line 39: | Line 39: | ||
: <math>O = \frac{- 2\beta \pm \sqrt{(2\beta)^2 -4\omega^2}}{2} = - \beta \pm \sqrt{\beta^2 -\omega^2}</math> | : <math>O = \frac{- 2\beta \pm \sqrt{(2\beta)^2 -4\omega^2}}{2} = - \beta \pm \sqrt{\beta^2 -\omega^2}</math> | ||
− | :<math> \left ( O - \beta + \sqrt{\beta^2 -\omega^2} \right ) \left ( | + | :<math> \left ( O + \beta + \sqrt{\beta^2 -\omega^2} \right ) \left ( O + \beta - \sqrt{\beta^2 -\omega^2}\right ) x = 0 </math> |
+ | |||
+ | |||
+ | You have change the second order differential equation into two first order differential equations | ||
+ | |||
+ | :<math> \left ( \frac{d}{dt} + \beta + \sqrt{\beta^2 -\omega^2} \right ) x = 0 </math> | ||
+ | ::<math> \Rightarrow \frac{dx}{x} = \left ( -\beta - \sqrt{\beta^2 -\omega^2} \right ) dt </math> | ||
+ | ::<math> x= e^{\left (- \beta - \sqrt{\beta^2 -\omega^2} \right )t} </math> | ||
+ | |||
+ | |||
+ | :<math> \left (\frac{d}{dt} + \beta - \sqrt{\beta^2 -\omega^2}\right ) x = 0 </math> | ||
+ | ::<math> \Rightarrow \frac{dx}{x} = \left ( - \beta + \sqrt{\beta^2 -\omega^2} \right ) dt </math> | ||
+ | ::<math> x= e^{\left ( - \beta + \sqrt{\beta^2 -\omega^2} \right )t} </math> | ||
[[Forest_UCM_Osc#Damped_Oscillations]] | [[Forest_UCM_Osc#Damped_Oscillations]] |
Revision as of 13:01, 5 October 2014
1-D Damped Oscillaions
Equation of Motion
As in the case of air resistance, assume there is frictional force proportional to the velocity of the oscillation body.
- : in 1-D
or
or
let
- undamped oscillation frequency
- damping constant
then
As see in section Forest_UCM_Osc_SHM#Equation_of_motion, you can determine solutions to the above
by writing the analogous auxilary equation:
Setting the term in parentheses to zero and using the quadratic formula
You have change the second order differential equation into two first order differential equations