Difference between revisions of "Forest UCM Osc 2-DOsc"

From New IAC Wiki
Jump to navigation Jump to search
Line 12: Line 12:
 
: <math>\ddot y = - \omega^2 y  \Rightarrow y = A_y \cos(\omega t - \delta_y)</math>
 
: <math>\ddot y = - \omega^2 y  \Rightarrow y = A_y \cos(\omega t - \delta_y)</math>
  
 +
you could define a relative phase between the two oscillators as
 +
 +
:\delta = \delta_y - \delta_x
 +
 +
it can be substituted into the above equations by shifting the time origin (problem 5.15)
 +
 +
let
 +
 +
:<math>t^{\prime} = t + t_0</math>
 +
then
 +
:<math>x = A_x \cos(\omega t^{\prime} - \omega t_0 - \delta_x)</math>
 +
 +
let
 +
 +
:<math>t_0 = \frac{-\delta_x}{\omega}</math>
 +
 +
:<math>  x=A_x \cos(\omega t^{\prime} - \omega\frac{-\delta_x}{\omega} - \delta_x)</math>
 +
::<math>  =A_x \cos(\omega t^{\prime})</math>
 +
 +
similarly
 +
 +
:<math>y = A_y \cos(\omega t^{\prime} - \omega t_0 - \delta_x)</math>
 +
::<math> =A_y \cos(\omega t^{\prime} - \omega \frac{-\delta_x}{\omega}  - \delta_x)</math>
 +
::<math>= A_y \cos(\omega t^{\prime} +\delta_x - \delta_y)</math>
 +
::<math>= A_y \cos(\omega t^{\prime} +\delta)</math>
 +
 +
 +
==Anisotropic Oscillator==
  
 
[[Forest_UCM_Osc#2-D_Oscillators]]
 
[[Forest_UCM_Osc#2-D_Oscillators]]

Revision as of 15:28, 4 October 2014

Two Dimensional Oscillators

Isotropic Oscillator

The simplest 2-D oscillator that is composed of identical springs (same spring constant).

[math] \vec F = -k( x \hat i + y \hat j)[/math]

The equations of motion are separable two equations, one for each direction

[math]\ddot x = - \omega^2x \Rightarrow x = A_x \cos(\omega t - \delta_x)[/math]
[math]\ddot y = - \omega^2 y \Rightarrow y = A_y \cos(\omega t - \delta_y)[/math]

you could define a relative phase between the two oscillators as

\delta = \delta_y - \delta_x

it can be substituted into the above equations by shifting the time origin (problem 5.15)

let

[math]t^{\prime} = t + t_0[/math]

then

[math]x = A_x \cos(\omega t^{\prime} - \omega t_0 - \delta_x)[/math]

let

[math]t_0 = \frac{-\delta_x}{\omega}[/math]
[math] x=A_x \cos(\omega t^{\prime} - \omega\frac{-\delta_x}{\omega} - \delta_x)[/math]
[math] =A_x \cos(\omega t^{\prime})[/math]

similarly

[math]y = A_y \cos(\omega t^{\prime} - \omega t_0 - \delta_x)[/math]
[math] =A_y \cos(\omega t^{\prime} - \omega \frac{-\delta_x}{\omega} - \delta_x)[/math]
[math]= A_y \cos(\omega t^{\prime} +\delta_x - \delta_y)[/math]
[math]= A_y \cos(\omega t^{\prime} +\delta)[/math]


Anisotropic Oscillator

Forest_UCM_Osc#2-D_Oscillators