Difference between revisions of "Forest UCM Osc 2-DOsc"
Jump to navigation
Jump to search
Line 12: | Line 12: | ||
: <math>\ddot y = - \omega^2 y \Rightarrow y = A_y \cos(\omega t - \delta_y)</math> | : <math>\ddot y = - \omega^2 y \Rightarrow y = A_y \cos(\omega t - \delta_y)</math> | ||
+ | you could define a relative phase between the two oscillators as | ||
+ | |||
+ | :\delta = \delta_y - \delta_x | ||
+ | |||
+ | it can be substituted into the above equations by shifting the time origin (problem 5.15) | ||
+ | |||
+ | let | ||
+ | |||
+ | :<math>t^{\prime} = t + t_0</math> | ||
+ | then | ||
+ | :<math>x = A_x \cos(\omega t^{\prime} - \omega t_0 - \delta_x)</math> | ||
+ | |||
+ | let | ||
+ | |||
+ | :<math>t_0 = \frac{-\delta_x}{\omega}</math> | ||
+ | |||
+ | :<math> x=A_x \cos(\omega t^{\prime} - \omega\frac{-\delta_x}{\omega} - \delta_x)</math> | ||
+ | ::<math> =A_x \cos(\omega t^{\prime})</math> | ||
+ | |||
+ | similarly | ||
+ | |||
+ | :<math>y = A_y \cos(\omega t^{\prime} - \omega t_0 - \delta_x)</math> | ||
+ | ::<math> =A_y \cos(\omega t^{\prime} - \omega \frac{-\delta_x}{\omega} - \delta_x)</math> | ||
+ | ::<math>= A_y \cos(\omega t^{\prime} +\delta_x - \delta_y)</math> | ||
+ | ::<math>= A_y \cos(\omega t^{\prime} +\delta)</math> | ||
+ | |||
+ | |||
+ | ==Anisotropic Oscillator== | ||
[[Forest_UCM_Osc#2-D_Oscillators]] | [[Forest_UCM_Osc#2-D_Oscillators]] |
Revision as of 15:28, 4 October 2014
Two Dimensional Oscillators
Isotropic Oscillator
The simplest 2-D oscillator that is composed of identical springs (same spring constant).
The equations of motion are separable two equations, one for each direction
you could define a relative phase between the two oscillators as
- \delta = \delta_y - \delta_x
it can be substituted into the above equations by shifting the time origin (problem 5.15)
let
then
let
similarly