Difference between revisions of "Forest UCM Osc SHM"
Line 68: | Line 68: | ||
:<math> x = Ae^{\gamma t} + Be^{\beta t} </math> | :<math> x = Ae^{\gamma t} + Be^{\beta t} </math> | ||
::<math> = Ae^{i \omega t} + Be^{-i\omega t} </math> | ::<math> = Ae^{i \omega t} + Be^{-i\omega t} </math> | ||
+ | |||
+ | ==Oscillator properties== | ||
+ | |||
+ | :<math> x = Ae^{i \omega t} + Be^{-i\omega t} </math> | ||
+ | |||
+ | Using Euler's formula for complex variables | ||
+ | |||
+ | :<math>e^{\pm ix} = \cos(x) \pm i \sin(x)</math> | ||
+ | |||
+ | :<math>\Rightarrow x = A\left ( \cos(\omega t) + i \sin(\omega t)\right ) + B\left ( \cos(\omega t) - i \sin(\omega t)\right )</math> | ||
+ | ::: <math>= (A + B) \cos (\omega t) + i(A-B) \sin(\omega t)</math> | ||
+ | ::: <math>= (A + B) \cos (\omega t) + i(A-B) \sin(\omega t)</math> | ||
+ | ::: <math>= A^{\prime}\cos (\omega t) + B^{\prime} \sin(\omega t)</math> | ||
+ | |||
+ | let | ||
+ | |||
+ | :<math>C = \sqrt{\left(A^{\prime}\right)^2+ \left ( B^{\prime}\right)^2}</math> | ||
+ | |||
+ | :<math>\cos\delta = \frac{A^{\prime}}{C}</math> | ||
+ | :<math>\sin\delta = \frac{B^{\prime}}{C}</math> | ||
+ | |||
+ | then | ||
+ | |||
+ | :<math>x = A^{\prime}\cos (\omega t) + B^{\prime} \sin(\omega t)</math> | ||
+ | ::<math> = C \left [ \frac{A^{\prime}}{C}\cos (\omega t) + \frac{B^{\prime}}{C} \sin(\omega t) \right ]</math> | ||
+ | ::<math> = C \left [\cos\delta\cos (\omega t) + \sin\delta \sin(\omega t) \right ]</math> | ||
+ | ::<math> = C \cos (\omega t - \delta) </math> | ||
+ | |||
+ | :<math>\cos(A-B) = \cos(A)\cos(B)+\sin(B)\sin(A)</math> | ||
+ | |||
+ | :<math>x=A \cos(\omega t - \delta)</math> | ||
+ | :<math>v = \dot x = \omega A \sin(\omega t - \delta)</math> | ||
==Kinetic (T) and potential (U) Energy == | ==Kinetic (T) and potential (U) Energy == |
Revision as of 14:30, 4 October 2014
Simple Harmonic Motion
Equation of motion
In solving the differential equation
- energy is constant with time
and observe that the above differential equation is a special case of the more general differential equation
- energy is constant with time
one could rewrite the above as
One could cast the above differential equation into an analogous quadratic equation if you
let
then the analogous equation becomes
where m, a, and k are constants
factoring this quadratic you would have
where a non-trivial solution would exist if one of the terms in the parentheses were zero
this basically reduces our 2nd order differential equation down to two first order differential equations
one of the solutions would be
For the special case where there isn't a first derivative term (a=0)
You simply have
or
then you have
Oscillator properties
Using Euler's formula for complex variables
let
then
Kinetic (T) and potential (U) Energy
- constant