Difference between revisions of "Forest UCM Energy CentralForce"

From New IAC Wiki
Jump to navigation Jump to search
Line 33: Line 33:
 
:<math>df = f(x+dx) -f(x) = \frac{df}{dx} dx</math>
 
:<math>df = f(x+dx) -f(x) = \frac{df}{dx} dx</math>
  
in three dimensions this may be written in term of the gradient as
+
in three dimensional cartesian coordinates this may be written in terms of the gradient as
  
:<math>df = \vec \nabla f \cdot d \vec r</math>
+
:<math>df =  \frac{df}{dx} dx +  \frac{df}{dy} dy +  \frac{df}{dz} dz =\vec \nabla f \cdot d \vec r</math>
::<math> = \frac{df}{dr} dr +\frac{df}r{d \theta} d \theta +\frac{df}r \sin \phi {d \phi} d \phi </math>
+
 
 +
To determine the gradient in sperical coordinates on just compares the two equations
 +
 
 +
:<math>\frac{df}{dr} dr + \frac{df}{d \theta} d\theta + \frac{df}{d\phi} d\phi =\vec \nabla f \cdot d \vec r</math>
 +
::<math>\vec \nabla f \cdot d \vec r = \left . \vec \nabla f \right |_r dr</math>
  
 
comparing terms of the above with  
 
comparing terms of the above with  

Revision as of 13:39, 27 September 2014

A central force is defined as a force depends only on separation distance

[math]\vec{F} = f(\vec r) \hat r[/math]

ie

Coulomb force and gravitation force.

Spherical Coordinates

Forest UCM SphericalCoordUnitVec.png

Forest_UCM_NLM_Ch1_CoordSys#Spherical

Gradient in spherical coordinates

The differential change of [math]\vec r[/math] in spherical coordinates occurs in three directions.


In the radial direction

[math]dr \hat r[/math]

In the polar angle direction

[math]r d \theta \hat \theta[/math]

In the aximuthal angle direction

[math]r \sin \phi d \phi \hat \phi[/math]

The differential force of the displacement vector in spherical coordinates is

[math]d \vec r = dr \hat r + r d \theta \hat \theta + r \sin \phi d \phi \hat \phi[/math]

The derivative may be represented as

[math]df = f(x+dx) -f(x) = \frac{df}{dx} dx[/math]

in three dimensional cartesian coordinates this may be written in terms of the gradient as

[math]df = \frac{df}{dx} dx + \frac{df}{dy} dy + \frac{df}{dz} dz =\vec \nabla f \cdot d \vec r[/math]

To determine the gradient in sperical coordinates on just compares the two equations

[math]\frac{df}{dr} dr + \frac{df}{d \theta} d\theta + \frac{df}{d\phi} d\phi =\vec \nabla f \cdot d \vec r[/math]
[math]\vec \nabla f \cdot d \vec r = \left . \vec \nabla f \right |_r dr[/math]

comparing terms of the above with

[math]d \vec r = dr \hat r + r d \theta \hat \theta + r \sin \phi d \phi \hat \phi[/math]



Forest_UCM_Energy#Central_Forces