Difference between revisions of "Forest UCM Energy Line1D"
Jump to navigation
Jump to search
Line 29: | Line 29: | ||
::<math> = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-U(x) \right )^{-\frac{1}{2}} dx </math> | ::<math> = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-U(x) \right )^{-\frac{1}{2}} dx </math> | ||
::<math> = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-\frac{1}{2}kx^2 \right )^{-\frac{1}{2}} dx </math> | ::<math> = \sqrt{\frac{m}{2}} \int_{x_0}^x\left (E-\frac{1}{2}kx^2 \right )^{-\frac{1}{2}} dx </math> | ||
− | ::<math> = \sqrt{\frac{ | + | ::<math> = \sqrt{\frac{mE}{2}} \int_{x_0}^x \left (1-\left ( x \sqrt{\frac{k}{2E}}\right ) ^2 \right )^{-\frac{1}{2}} dx </math> |
let | let | ||
Line 38: | Line 38: | ||
then | then | ||
− | : <math>t = \sqrt{\frac{ | + | : <math>t = \sqrt{\frac{mE}{2}} \int_{x_0}^x \left (1-\sin^2 \theta \right )^{-\frac{1}{2}} dx </math> |
− | : <math>= \sqrt{\frac{ | + | : <math>= \sqrt{\frac{mE}{2}} \int_{x_0}^x \frac{dx}{ \cos \theta } </math> |
:: <math>= \frac{1}{\omega} \int_{\theta_0}^{\theta} d \theta</math> | :: <math>= \frac{1}{\omega} \int_{\theta_0}^{\theta} d \theta</math> | ||
[[Forest_UCM_Energy#Energy_for_Linear_1-D_systems]] | [[Forest_UCM_Energy#Energy_for_Linear_1-D_systems]] |
Revision as of 12:32, 26 September 2014
The equation of motion for a system restricted to 1-D is readily solved from conservation of energy when the force is conservative.
- cosntant
The ambiguity in the sign of the above relation, due to the square root operation, is easily resolved in one dimension by inspection and more difficult to resolve in 3-D.
The velocity can change direction (signs) during the motion. In such cases it is best to separte the inegral into a part for one direction of the velocity and a second integral for the case of a negative velocity.
spring example
Consider the problem of a mass attached to a spring in 1-D.
The potential is given by
let
- and
- </math>
then