Difference between revisions of "Forest UCM Energy TimeDepPE"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
| Line 15: | Line 15: | ||
| :<math>d T = \frac{dT}{dt} dt = (m \vec \dot v \cdot v) dt  = \vec F \cdot d \vec r</math> | :<math>d T = \frac{dT}{dt} dt = (m \vec \dot v \cdot v) dt  = \vec F \cdot d \vec r</math> | ||
| − | + | If a potential U for the force exists such that  | |
| − | :<math> | + | :<math>\vec F = - \vec \nabla U(r,t) \cdt d \vec r</math> | 
| or   | or   | ||
| − | :<math>dU(r,t) = \frac{\partial}{\partial x} dx +\frac{\partial}{\partial y} dy +\frac{\partial}{\partial z} dz +\frac{\partial}{\partial t} dt </math> | + | :<math>dU(r,t) = \frac{\partial U}{\partial x} dx +\frac{\partial U}{\partial y} dy +\frac{\partial U}{\partial z} dz +\frac{\partial U}{\partial t} dt </math> | 
| − | :<math>= - \vec F \cdot d \vec r +  \frac{\partial}{\partial t} dt </math> | + | :<math>= - \vec F \cdot d \vec r +  \frac{\partial U}{\partial t} dt </math> | 
| − | :<math>= - dT +  \frac{\partial}{\partial t} dt </math> | + | :<math>= - dT +  \frac{\partial U}{\partial t} dt </math> | 
| or   | or   | ||
| − | :<math>dT + dU = \frac{\partial}{\partial t} dt  </math> | + | :<math>dT + dU = \frac{\partial U}{\partial t} dt  </math> | 
Revision as of 15:42, 24 September 2014
Time dependent force.
What happens if you have a time dependent force that still manages to satisfy
- ?
Because of the above, and Stoke's Theorem , you would be able to find a close loop where zero work is done at some given time.
If we consider the work energy theorem
or
If a potential U for the force exists such that
or
or