Difference between revisions of "Forest UCM Energy CurlFcons"

From New IAC Wiki
Jump to navigation Jump to search
Line 38: Line 38:
 
:<math>\oint \vec F \cdot d \vec r= \iint (\vec \nabla \times \vec F) \cdot d \vec A</math>
 
:<math>\oint \vec F \cdot d \vec r= \iint (\vec \nabla \times \vec F) \cdot d \vec A</math>
  
 +
 +
Thus if you have a conservative force then
 +
 +
:<math>\oint \vec F \cdot d \vec r= 0 = \iint (\vec \nabla \times \vec F) \cdot d \vec A</math>
 +
 +
if
 +
 +
:<math> \iint (\vec \nabla \times \vec F) \cdot d \vec A=0</math>
 +
 +
then
 +
 +
:<math> (\vec \nabla \times \vec F) =0</math>  One way for this integral (sum) to be zero is if you add up something that is zero everywhere
  
 
== A additional argument using stokes theorem==
 
== A additional argument using stokes theorem==

Revision as of 11:33, 24 September 2014

A force with a curl of zero is a conservative force.

Thus taking the curl of the force is an easier way to test for conservative forces rather than calculating the work and inspecting to see if it only depends on the endpoints of the motion.

Definition of curl

We have seen that the gradient operator is defined in cartesian coordinates as

[math]\vec \nabla = \frac{\partial}{\partial x} \hat i +\frac{\partial}{\partial y} \hat j +\frac{\partial}{\partial z} \hat k[/math]

can be used to find the functional form of a conservative force given its potential energy

Stokes Theorem

closed line integral

A closed integral is a mathematical expressionwhich may be used to calculate the work done by a force when an object moves to some distant point and then returns to its point of origin

[math]\oint \vec F \cdot d \vec r = \int_{r_1}^{r_2} \vec F \cdot d \vec r + \int_{r_2}^{r_1} \vec F \cdot d \vec r[/math]
[math] = W + (-W) =0 [/math]

The above is true if you have a conservative force where the work done only depends on the endpoints.

Stokes theorem

Stokes theorem relates the line integral of a vector field over its closed boundary

[math]\oint \vec F \cdot d \vec r[/math]
(the circle around the integral indicates a closed path, you go to some point and then back)

to the surface integral of the curl of the vector field over a surface

[math]\iint (\vec \nabla \times \vec F) \cdot d \vec A[/math]

Stokes theorem equates the two integrals

[math]\oint \vec F \cdot d \vec r= \iint (\vec \nabla \times \vec F) \cdot d \vec A[/math]


Thus if you have a conservative force then

[math]\oint \vec F \cdot d \vec r= 0 = \iint (\vec \nabla \times \vec F) \cdot d \vec A[/math]

if

[math] \iint (\vec \nabla \times \vec F) \cdot d \vec A=0[/math]

then

[math] (\vec \nabla \times \vec F) =0[/math] One way for this integral (sum) to be zero is if you add up something that is zero everywhere

A additional argument using stokes theorem

If we have a conservative force such that

[math]F = -\vec \nabla U[/math]
[math]\vec \nabla \times \vec F = \vec \nabla \times (-\vec \nabla U) [/math]
[math]\vec \nabla \times \vec \nabla = 0 [/math] The cross product of the same vector is zero since it is parallel to itself.

Forest_UCM_Energy#Second_requirement_for_Conservative_Force