Difference between revisions of "Forest UCM Ch3 CoM"

From New IAC Wiki
Jump to navigation Jump to search
Line 47: Line 47:
  
 
:<math>\vec{R} = \frac{1}{M} \int \sigma \vec{r} dA</math>
 
:<math>\vec{R} = \frac{1}{M} \int \sigma \vec{r} dA</math>
 +
 +
Since the diameter of the semicircle lies along the x-axis, symmetry arguments can be used to locate the position of the center of mass in the x-direction as being on the x-axis.
 +
 +
 +
For the Y-direction
 +
 +
:<math>Y = \frac{1}{M} \int \sigma y dA</math>
 +
::<math>=  \int \frac{\sigma}{M} y dA</math>
 +
::<math>=  \int \frac{1}{A} y dA</math>
 +
::<math>=  \int y \frac{dA}{A}</math>
 +
::<math>=  \int r \sin \phi \frac{rdrd \phi}{\frac{1}{2}\phi R^2}</math>
  
 
=Problem 3-19=
 
=Problem 3-19=
  
 
[[Forest_UCM_MnAM#Center_of_Mass]]
 
[[Forest_UCM_MnAM#Center_of_Mass]]

Revision as of 14:35, 13 September 2014

The Center of mass

Definition of the Center of Mass

The position [math]\vec R[/math] of the center of mass is given by

[math]\vec{R} = \frac{\sum_i^N m_i \vec{r}_i}{\sum_i^N m_i}[/math]


The center of mass is given as the sum of the position of each object in the system weighted by the objects mass.


For a rigid object the location of the center of mass is given by


[math]\vec{R} = \frac{1}{M} \int \vec{r} dm[/math]

Example 1: CM of three particles

Calculate the location of the center of mass given the three particles below

[math]\vec{r}_1 = (1,1,0) = \hat i + \hat j[/math]
[math]\vec{r}_2 = (1,-1,0) = \hat i - \hat j[/math]
[math]\vec{r}_3 = (0,0,0) = \vec{0}[/math]

when

[math]m_1 = m_2 = 3 m_3[/math]


let [math] m_3 = M[/math]

[math]\vec{R} = \frac{3M (1) + 3 M (1) + M(0)}{9M} \hat i + \frac{3M (1) + 3 M (-1) + M(0)}{9M} \hat j[/math]
[math]\vec{R} = \frac{6}{9} \hat i + \frac{0}{9} \hat j[/math]

Example 2: CM of a flat disk

Example 3: CM of a semicircle

A semicircle of radius R lies in the xy plane with its center at the origin and a diameter lying along the x axis. Use polar coordinates to locte the position of the center of mass of the semicircle.


Assume

[math]M =[/math] mass of the semicircle
[math]\sigma =[/math] the mass density
[math]\vec{R} = \frac{1}{M} \int \sigma \vec{r} dA[/math]

Since the diameter of the semicircle lies along the x-axis, symmetry arguments can be used to locate the position of the center of mass in the x-direction as being on the x-axis.


For the Y-direction

[math]Y = \frac{1}{M} \int \sigma y dA[/math]
[math]= \int \frac{\sigma}{M} y dA[/math]
[math]= \int \frac{1}{A} y dA[/math]
[math]= \int y \frac{dA}{A}[/math]
[math]= \int r \sin \phi \frac{rdrd \phi}{\frac{1}{2}\phi R^2}[/math]

Problem 3-19

Forest_UCM_MnAM#Center_of_Mass