Difference between revisions of "Forest UCM PnCP ProjMotion"
Jump to navigation
Jump to search
Line 13: | Line 13: | ||
Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity ([[Forest_UCM_PnCP_LinAirRes]]) we can write : | Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity ([[Forest_UCM_PnCP_LinAirRes]]) we can write : | ||
+ | : <math>x= \frac{m}{b} v_i \left ( 1-e^{-\frac{b}{m}t} \right )</math> | ||
+ | in the y-direction however, the directions are changed to represent an object moving upwards instead of falling | ||
+ | |||
+ | Newton's second law for falling | ||
− | |||
:<math>\sum \vec{F}_{ext} = mg -bv = m \frac{dv}{dt}</math> | :<math>\sum \vec{F}_{ext} = mg -bv = m \frac{dv}{dt}</math> | ||
+ | becomes | ||
+ | |||
+ | :<math>\sum \vec{F}_{ext} = -mg +bv = m \frac{dv}{dt}</math> | ||
+ | |||
+ | for a rising projectile | ||
+ | |||
+ | This changes the signs in front of the <math>v_t</math> terms such that | ||
+ | |||
+ | :<math>y= v_t t + \frac{1}{b}\left ( v_0 - v_t) \right ) \left ( 1- e^{-bt} \right ) dt</math> | ||
+ | |||
+ | becomes | ||
+ | :<math>= -v_t t + \frac{1}{b}\left ( v_0 + v_t) \right ) \left ( 1- e^{-bt} \right ) dt</math> | ||
[[Forest_UCM_PnCP#Projecile_Motion]] | [[Forest_UCM_PnCP#Projecile_Motion]] |
Revision as of 12:15, 1 September 2014
Projectile Motion
Friction depends lienarly on velocity
Projectile motion describes the path a mass moving in two dimensions. An example of which is the motion of a projectile shot out of a cannon with an initial velocity
with an angle of inclination .When the motion in each dimension is independent, the kinematics are separable giving you two equations of motion that depend on the same time.
Using our solutions for the horizontal and vertical motion when friction depends linearly on velocity (Forest_UCM_PnCP_LinAirRes) we can write :
in the y-direction however, the directions are changed to represent an object moving upwards instead of falling
Newton's second law for falling
becomes
for a rising projectile
This changes the signs in front of the
terms such thatbecomes