Difference between revisions of "Forest UCM NLM Oscilations"

From New IAC Wiki
Jump to navigation Jump to search
Line 26: Line 26:
 
==Step 5: apply Netwon's 2nd Law==
 
==Step 5: apply Netwon's 2nd Law==
  
: <math>\sum \vec{F}_ext = \vec{F}_g + \vec{N} = m  \left (  \ddot{r}  -r\dot{\phi}^2 \right) \hat{r}  + \left ( 2\dot{r} \dot{\phi} +r \ddot{\phi} \right ) \hat{\phi}</math>
+
: <math>\sum \vec{F}_{ext} = \vec{F}_g + \vec{N} = m  \left (  \ddot{r}  -r\dot{\phi}^2 \right) \hat{r}  + \left ( 2\dot{r} \dot{\phi} +r \ddot{\phi} \right ) \hat{\phi}</math>
  
 
For the case of circular motion at constant <math> r (\dot{r} = 0)</math>
 
For the case of circular motion at constant <math> r (\dot{r} = 0)</math>
  
:<math>\vec{a} =  -r\dot{\phi}^2 \hat{r}  + r \ddot{\phi} \hat{\phi} </math>
+
:<math>\vec{F}_g + \vec{N}  m \left ( -r\dot{\phi}^2 \hat{r}  + r \ddot{\phi} \hat{\phi} \right ) </math>
  
 
[[Forest_UCM_NLM#Oscillatiions]]
 
[[Forest_UCM_NLM#Oscillatiions]]

Revision as of 12:08, 31 August 2014

Skate boarder in Half pipe

Consider a frictionless skateboard released from the top of a semi-circle (half pipe) and oriented to fall directly towards the bottom. The semi-circle has a radius [math]R[/math] and the skateboard has a mass [math]m[/math].

Note: because the skateboard is frictionless, its wheels are not going to turn.

Step 1: System

The skateboard of mass [math]m[/math] is the system.

Step 1: Coordinate system

Polar coordinate may be a good coordinate system to use since the skateboard's motion will be along the half circle.

300 px

Step 3: Free Body Diagram

Step 4: External Force vectors

[math]\vec{F}_g = -mg \cos \theta \hat{r} - mg \sin \theta \hat{\phi}[/math]
[math]\vec{N} = N \hat{r}[/math]

Step 5: apply Netwon's 2nd Law

[math]\sum \vec{F}_{ext} = \vec{F}_g + \vec{N} = m \left ( \ddot{r} -r\dot{\phi}^2 \right) \hat{r} + \left ( 2\dot{r} \dot{\phi} +r \ddot{\phi} \right ) \hat{\phi}[/math]

For the case of circular motion at constant [math] r (\dot{r} = 0)[/math]

[math]\vec{F}_g + \vec{N} = m \left ( -r\dot{\phi}^2 \hat{r} + r \ddot{\phi} \hat{\phi} \right ) [/math]

Forest_UCM_NLM#Oscillatiions