Difference between revisions of "Forest UCM NLM BlockOnIncline"

From New IAC Wiki
Jump to navigation Jump to search
Line 45: Line 45:
  
  
: <math>\int_0^t dt = \int_{v_i}^v \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math>
+
: <math>\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math>
  
  
Line 71: Line 71:
 
substituting
 
substituting
  
:<math>\int_0^t dt = \int_{v_i}^v \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math>
+
:<math>\int dt = \int \frac{dv}{k \left ( v_t^2 - v^2 \right)}</math>
 
:<math>t = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t}\right )  = \frac{1}{kv_t} \tanh^{-1} \left ( \frac{v}{v_t} \right ) </math>
 
:<math>t = \frac{-i}{kv_t} \tan^{-1} \left ( \frac{iv}{v_t}\right )  = \frac{1}{kv_t} \tanh^{-1} \left ( \frac{v}{v_t} \right ) </math>
  

Revision as of 14:08, 24 August 2014

the problem

Consider a block of mass m is sliding down the inclined plane shown below with a frictional force that is given by

Ff=kmv2


How long does it take to fall a distance x?

200 px

Step 1: Identify the system

The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.

Step 2: Choose a suitable coordinate system

A coordinate system with one axis along the direction of motion may make solving the problem easier

Step 3: Draw the Free Body Diagram

200 px

Step 4: Define the Force vectors using the above coordinate system

N=|N|ˆj
Fg=|Fg|(sinθˆicosθˆj)=mg(sinθˆicosθˆj)
Ff=kmv2ˆi

Step 5: Used Newton's second law

Motion in the ˆi direction described by Newton's second law is:

Fext=mgsinθmkv2=max=mdvxdt
Notice a terminal velocity vt exists when ax=0
mgsinθmkv2=max=0
v2t=gsinθk
This means that the block does not stop sliding but instead it reaches a minimal (terminal) velocity.

Insert the terminal velocity constant into Newton's second law

Fext=mk(v2tv2)=max=mdvxdt


dt=dvk(v2tv2)


Integral table

dxa2+b2x2=1abtan1bxa


a2=v2t=gsinθk
b2=1=i2
dvgsinθkv2=1ikvttan1(ivvt)
=ikvttan1(ivvt)


Identities

itan1(icx)=tanh1(cx)=tanh1(|b|ax)
tan1(z)=i2log(i+ziz)
tanh1(z)=12log(1+z1z)
tan1(ix)=i2log(i+ixiix)=i2log(1+1x1x)=itanh1(x)


substituting

dt=dvk(v2tv2)
t=ikvttan1(ivvt)=1kvttanh1(vvt)

Solving for v

v=vttanh(kvtt)=dxdt


dx=vttanh(kvtt)dt


Integral table

tanh(x)dx=ln(cosh(x))


x=1kln(cosh(kvtt))

solving for the fall time

t=cosh1(ekx)kvt=cosh1(ekx)kgsinθ


Forest_UCM_NLM#Block_on_incline_with_friction