Difference between revisions of "Forest UCM NLM BlockOnInclineWfriction"

From New IAC Wiki
Jump to navigation Jump to search
Line 46: Line 46:
  
  
:<math>v(t) =\left \{  {v_i - g \left ( \mu -\sin \theta \right ) t \;\;\;\;\;\;\;\; t< \frac{v_i}{\left ( \mu - \sin \theta \right ) } \atop  0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; t>= \frac{v_i}{\left ( \mu - \sin \theta \right ) }} \right .</math>
+
:<math>v(t) =\left \{  {v_i - g \left ( \mu -\sin \theta \right ) t \;\;\;\;\;\;\;\; t< \frac{v_i}{\left ( \mu - \sin \theta \right ) } \atop  0\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\;\; t>= \frac{v_i}{\left ( \mu - \sin \theta \right ) }} \right .</math>
  
  

Revision as of 12:34, 21 August 2014

The problem

Consider a block of mass m sliding down an infinitely long inclined plane shown below with a frictional force that is given by

Ff=μmg


200 px

Find the blocks speed as a function of time.

Step 1: Identify the system

The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.

Step 2: Choose a suitable coordinate system

A coordinate system with one axis along the direction of motion may make solving the problem easier

Step 3: Draw the Free Body Diagram

200 px

Step 4: Define the Force vectors using the above coordinate system

N=|N|ˆj
Fg=|Fg|(sinθˆicosθˆj)=mg(sinθˆicosθˆj)
Ff=μmgˆi

Step 5: Use Newton's second law

in the ˆi direction

Fext=mgsinθμmg=max=mdvxdt
t0g(sinθμ)dt=vvidv
v=vig(μsinθ)t


The amount of time that lapses until the blocks final velocity is zero

t=vi(μsinθ)

After the above time the blocks speed is zero. The friction will change from being kinetic to static after the above time interval.


v(t)={vig(μsinθ)tt<vi(μsinθ)0t>=vi(μsinθ)


V(x)={0x<0Vox>0


Forest_UCM_NLM#Block_on_incline_with_friction