Difference between revisions of "Forest UCM NLM BlockOnInclineWfriction"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
  
 +
=the problem=
  
 +
Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by
 +
 +
:<math>F_f = kmv^2</math>
 +
 +
 +
[[File:TF_UCM_InclinedPlaneWfriction.png | 200 px]]
 +
 +
Find the blocks speed as a function of time.
 +
 +
=Step 1:  Identify the system=
 +
 +
:The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.
 +
 +
=Step 2: Choose a suitable coordinate system=
 +
 +
: A coordinate system with one axis along the direction of motion may make solving the problem easier
 +
 +
=Step 3: Draw the Free Body Diagram=
 +
 +
[[File:TF_UCM_FBD_InclinedPlaneWfriction.png | 200 px]]
 +
 +
=Step 4: Define the Force vectors using the above coordinate system=
 +
 +
:<math>\vec{N} = \left | \vec{N} \right | \hat{j}</math>
 +
:<math>\vec{F_g} = \left | \vec{F_g} \right | \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )= mg \left ( \sin \theta \hat{i} - \cos \theta \hat{j} \right )</math>
 +
:<math>\vec{F_f} = - kmv^2 \hat{i}</math>
 +
 +
=Step 5: Used Newton's second law=
 +
 +
==in the <math>\hat i</math> direction==
 +
 +
:<math>\sum F_{ext} = mg \sin \theta -mkv^2 = ma_x = m \frac{dv_x}{dt}</math>
 +
: <math>\int_0^t dt = \int_0^v \frac{dv}{g\sin \theta - kv^2}</math>
 +
 +
Integral table <math>\Rightarrow</math>
 +
 +
::<math>\int \frac{dx}{a^2 + b^2x^2} = \frac{1}{ab} \tan^{-1} \frac{bx}{a}</math>
 +
 +
 +
: <math>a^2 = g \sin \theta</math>
 +
: <math>b^2= -k</math>
 +
 +
:<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{-gk\sin \theta}} \tan^{-1} \left ( \sqrt{\frac{-k}{g \sin \theta}} \; v \right )</math>
 +
 +
 +
:: <math>i \equiv \sqrt{-1}</math>
 +
 +
:<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{gk\sin \theta}} i \tan^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;iv \right )</math>
 +
 +
::<math>i\tan^{-1}(icx) = -\tanh^{-1}(cx) = -\tanh^{-1}\left (\frac{\left | b \right |}{a} x\right )</math>
 +
 +
 +
Identities
 +
 +
::<math>\tan^{-1}(z) = \frac{i}{2} \log \left ( \frac{i + z}{i-z}\right )</math>
 +
::<math>\tanh^{-1}(z) = \frac{1}{2} \log \left ( \frac{1 + z}{1-z}\right )</math>
 +
:<math>\tan^{-1}(ix) = \frac{i}{2} \log \left ( \frac{i + ix}{i-ix}\right )=\frac{i}{2} \log \left ( \frac{1 + 1x}{1-x}\right ) = i\tanh^{-1}(x)</math>
 +
 +
:<math>t = \frac{1}{\sqrt{gk\sin \theta}} \tanh^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;v \right )</math>
 +
 +
Solving for <math>v</math>
 +
 +
: v = \tan \left ( \sqrt{gk\sin \theta} i t \right )
 +
::=
 +
 +
[[Forest_UCM_NLM#Block_on_incline_with_friction]]
  
  
  
 
[[Forest_UCM_NLM#Block_on_incline_with_friction]]
 
[[Forest_UCM_NLM#Block_on_incline_with_friction]]

Revision as of 20:14, 20 August 2014

the problem

Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by

Ff=kmv2


200 px

Find the blocks speed as a function of time.

Step 1: Identify the system

The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.

Step 2: Choose a suitable coordinate system

A coordinate system with one axis along the direction of motion may make solving the problem easier

Step 3: Draw the Free Body Diagram

200 px

Step 4: Define the Force vectors using the above coordinate system

N=|N|ˆj
Fg=|Fg|(sinθˆicosθˆj)=mg(sinθˆicosθˆj)
Ff=kmv2ˆi

Step 5: Used Newton's second law

in the ˆi direction

Fext=mgsinθmkv2=max=mdvxdt
t0dt=v0dvgsinθkv2

Integral table

dxa2+b2x2=1abtan1bxa


a2=gsinθ
b2=k
dvgsinθkv2=1gksinθtan1(kgsinθv)


i1
dvgsinθkv2=1gksinθitan1(kgsinθiv)
itan1(icx)=tanh1(cx)=tanh1(|b|ax)


Identities

tan1(z)=i2log(i+ziz)
tanh1(z)=12log(1+z1z)
tan1(ix)=i2log(i+ixiix)=i2log(1+1x1x)=itanh1(x)
t=1gksinθtanh1(kgsinθv)

Solving for v

v = \tan \left ( \sqrt{gk\sin \theta} i t \right )
=

Forest_UCM_NLM#Block_on_incline_with_friction


Forest_UCM_NLM#Block_on_incline_with_friction