Difference between revisions of "Forest UCM NLM GalileanTans"

From New IAC Wiki
Jump to navigation Jump to search
Line 7: Line 7:
  
  
\vec{R} represents a vector that locates the origin of the moving reference frame (<math>S^{\prime}</math>) with respect to the origin of reference from <math>S</math>.
+
<math>\vec{R}</math> represents a vector that locates the origin of the moving reference frame (<math>S^{\prime}</math>) with respect to the origin of reference from <math>S</math>.
 +
 
 +
Using the definition of vector addition
 +
 
 +
:<math>\vec{r} = \vec{R} + \vec{r}^{\prime}</math>
 +
 
 +
Similarly
 +
 
 +
:<math>\vec{v} = \frac{d \vec{r}}{dt} =  \frac{d \vec{R}}{dt}  +  \frac{d \vec{r}^{\prime}}{dt} </math>
 +
 
 +
and
 +
 
 +
:<math>\vec{a} = \frac{d^2 \vec{r}}{dt^2} =  \frac{d^2 \vec{R}}{dt^2}  +  \frac{d^2 \vec{r}^{\prime}}{dt^2} </math>
  
  
 
[[Forest_UCM_NLM#Galilean_Transformations]]
 
[[Forest_UCM_NLM#Galilean_Transformations]]

Revision as of 12:33, 20 August 2014

TF UCM GalileanTans RefFrame.png

Assume that [math]S^{\prime}[/math] is a coordinate system moving at a CONSTANT speed [math]v[/math].


Let [math]\vec{r}[/math] and [math]\vec{r}^{\prime}[/math] describe the position an object in motion using two different coordinate systems [math]S[/math] and [math]S^{\prime}[/math] respectively.


[math]\vec{R}[/math] represents a vector that locates the origin of the moving reference frame ([math]S^{\prime}[/math]) with respect to the origin of reference from [math]S[/math].

Using the definition of vector addition

[math]\vec{r} = \vec{R} + \vec{r}^{\prime}[/math]

Similarly

[math]\vec{v} = \frac{d \vec{r}}{dt} = \frac{d \vec{R}}{dt} + \frac{d \vec{r}^{\prime}}{dt} [/math]

and

[math]\vec{a} = \frac{d^2 \vec{r}}{dt^2} = \frac{d^2 \vec{R}}{dt^2} + \frac{d^2 \vec{r}^{\prime}}{dt^2} [/math]


Forest_UCM_NLM#Galilean_Transformations