Difference between revisions of "Forest UCM NLM BlockOnIncline"
Jump to navigation
Jump to search
Line 50: | Line 50: | ||
:<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{gk\sin \theta}} i \tan^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;iv \right )</math> | :<math>\int \frac{dv}{g\sin \theta - kv^2} = \frac{1}{\sqrt{gk\sin \theta}} i \tan^{-1} \left ( \sqrt{\frac{k}{g \sin \theta}} \; \;iv \right )</math> | ||
− | ::<math>\tan^{-1}(icx) = | + | ::<math>\tan^{-1}(icx) = tanh^{-1}(cx) = tanh^{-1}\left ({\frac{\left | b \right |}{a} x\right )</math> |
Solving for <math>v</math> | Solving for <math>v</math> |
Revision as of 03:08, 19 August 2014
the problem
Consider a block of mass m sliding down the inclined plane shown below with a frictional force that is given by
Find the blocks speed as a function of time.
Step 1: Identify the system
- The block is the system with the following external forces, A normal force, a gravitational force, and the force of friction.
Step 2: Choose a suitable coordinate system
- A coordinate system with one axis along the direction of motion may make solving the problem easier
Step 3: Draw the Free Body Diagram
Step 4: Define the Force vectors using the above coordinate system
Step 5: Used Newton's second law
in the direction
Integral table
Solving for
- v = \tan \left ( \sqrt{gk\sin \theta} i t \right )
- =