Difference between revisions of "DiV MaxEnt"

From New IAC Wiki
Jump to navigation Jump to search
Line 16: Line 16:
 
*Kevin H. Knuth, John Skilling, '''Foundations of Inference''', Axioms 2012, 1(1):38-73
 
*Kevin H. Knuth, John Skilling, '''Foundations of Inference''', Axioms 2012, 1(1):38-73
 
*Yoel Tikochinsky, '''Feynman Rules for Probability Amplitudes''', International Journal of Theoretical Physics, Vol. 27, No. 5, 1988
 
*Yoel Tikochinsky, '''Feynman Rules for Probability Amplitudes''', International Journal of Theoretical Physics, Vol. 27, No. 5, 1988
*Y. Tikochinsky*, N. Z. Tishby*, and R. D. Levine ,'''Consistent Inference of Probabilities for Reproducible Experiments''', Phys. Rev. Lett. 52, 1357–1360 (1984)
+
*Y. Tikochinsky*, N. Z. Tishby*, and R. D. Levine ,'''Consistent Inference of Probabilities for Reproducible Experiments''', Phys. Rev. Lett. 52, 1357–J. M. Borwein, A. S. Lewis and D. Noll1360 (1984)
 
*CLAUDE E. SHANNON, '''Communication in the Presence of Noise''', PROCEEDINGS OF THE IEEE, VOL. 86, NO. 2, FEBRUARY 1998 447
 
*CLAUDE E. SHANNON, '''Communication in the Presence of Noise''', PROCEEDINGS OF THE IEEE, VOL. 86, NO. 2, FEBRUARY 1998 447
 
*Tommaso Toffoli, '''How much of physics is just computation?''', Superlattices and Microstructures, 23, 381-406 (1998)
 
*Tommaso Toffoli, '''How much of physics is just computation?''', Superlattices and Microstructures, 23, 381-406 (1998)
Line 37: Line 37:
 
*Michael E. Fisher '''Solution of a Combinatorial Problem—Intermediate Statistics''' American Journal of Physics -- January 1962 -- Volume 30, Issue 1, pp. 49
 
*Michael E. Fisher '''Solution of a Combinatorial Problem—Intermediate Statistics''' American Journal of Physics -- January 1962 -- Volume 30, Issue 1, pp. 49
 
*B. Roy Frieden and Bernard H. Soffer '''Lagrangians of physics and the game of Fisher-information transfer''' Phys. Rev. E 52, 6917–6917 (1995)
 
*B. Roy Frieden and Bernard H. Soffer '''Lagrangians of physics and the game of Fisher-information transfer''' Phys. Rev. E 52, 6917–6917 (1995)
 +
 +
*J. M. Borwein, A. S. Lewis and D. Noll '''Maximum Entropy Reconstruction Using Derivative Information, Part 1: Fisher Information and Convex Duality'''
 +
*J. M. Borwein , A. S. Lewis , M. N. Limber , D. Noll '''Maximum Entropy Spectral Analysis Using Derivative Information Part 2: Computational Results'''
 +
*FRÖHNER F. H. '''Assigning uncertainties to scientific data'''

Revision as of 20:59, 7 January 2013

go back


  • Jaynes, E. T., Probability in Quantum Theory, in Complexity, Entropy, and the Physics of Information, W. H. Zurek (ed.), Addison-Wesley, Redwood City, CA, p. 381, 1990
  • Jaynes, E. T., Macroscopic Prediction, in Complex Systems - Operational Approaches, H. Haken (ed.), Springer-Verlag, Berlin, p. 254, 1985
  • Jaynes, E. T., The Minimum Entropy Production Principle, Ann. Rev. Phys. Chem. 31, 579, 1980
  • Ariel Caticha, From Inference to Physics, Presented at MaxEnt 2008, the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering (July 8-13, 2008, Boraceia Beach, Sao Paulo, Brazil)
  • Ariel Caticha, Entropic Dynamics, Presented at MaxEnt 2001, the 21th International Workshop on Bayesian Inference and Maximum Entropy Methods (August 4-9, 2001, Baltimore, MD, USA)
  • Ariel Caticha, Updating Probabilities, Presented at MaxEnt 2006, the 26th International Workshop on Bayesian Inference and Maximum Entropy Methods (July 8-13, 2006, Paris, France)
  • Ariel Caticha, Relative Entropy and Inductive Inference, Presented at MaxEnt23, the 23rd International Workshop on Bayesian Inference and Maximum Entropy Methods (August 3-8, 2003, Jackson Hole, WY, USA)
  • Ariel Caticha, Entropic Dynamics', Presented at MaxEnt 2001, the 21th International Workshop on Bayesian Inference and Maximum Entropy Methods (August 4-9, 2001, Baltimore, MD, USA)
  • S.F. Gull and J. Skilling, Maximum entropy method in image processing', IEE PROCEEDINGS, Vol. 131, Pt. F, No. 6, OCTOBER 1984
  • S.F. Gull and J. Skilling, Maximum Entropy Image Reconstruction - General Algorithm, Monthly Notices of the Royal Astronomical Society, Vol. 211, NO.1, P. 111, 1984
  • Skilling, John, The Canvas of Rationality, BAYESIAN INFERENCE AND MAXIMUM ENTROPY METHODS IN SCIENCE AND ENGINEERING: Proceedings of the 28th International Workshop on Bayesian Inference and Maximum Entropy Methods in Science and Engineering. AIP Conference Proceedings, Volume 1073, pp. 67-79 (2008).
  • Sýkora, Stanislav, Quantum theory and the bayesian inference problems, Journal of Statistical Physics, Volume 11, Issue 1, pp.17-27
  • Kevin H. Knuth, John Skilling, Foundations of Inference, Axioms 2012, 1(1):38-73
  • Yoel Tikochinsky, Feynman Rules for Probability Amplitudes, International Journal of Theoretical Physics, Vol. 27, No. 5, 1988
  • Y. Tikochinsky*, N. Z. Tishby*, and R. D. Levine ,Consistent Inference of Probabilities for Reproducible Experiments, Phys. Rev. Lett. 52, 1357–J. M. Borwein, A. S. Lewis and D. Noll1360 (1984)
  • CLAUDE E. SHANNON, Communication in the Presence of Noise, PROCEEDINGS OF THE IEEE, VOL. 86, NO. 2, FEBRUARY 1998 447
  • Tommaso Toffoli, How much of physics is just computation?, Superlattices and Microstructures, 23, 381-406 (1998)
  • Tommaso Toffoli, Action, Or the Fungibility of Computation, Feynman and Computation, 349-392 (1999)
  • Tommaso Toffoli, Occam, Turing, von Neumann, Jaynes: How much can you get for how little?, proceedings of the conference ACRI '94: Automi Cellulari per la Ricerca e l'Industria, Rende (CS), Italy, September 29--30, 1994
  • Plastino, A.; Plastino, A. R., On the universality of thermodynamics' Legendre transform structure, Physics Letters A 226 (1997) 257-263
  • A. Plastino, E. M. F. Curado, Equivalence between maximum entropy principle and enforcing dU=TdS, Phys. Rev. E 72, 047103 (2005)
  • F. Pennini, A. Plastino, Heisenberg-Fisher thermal uncertainty measure, Phys. Rev. E 69, 057101 (2004)
  • F. Pennini and A. Plastino, Reciprocity relations between ordinary temperature and the Frieden-Soffer Fisher temperature, Phys. Rev. E 71, 047102 (2005)
  • A. Plastino, A. R. Plastino, B H Soffer, Fisher information and thermodynamics' 1st. law, arXiv:cond- mat/0509697 v2 28 Sep 2005
  • A. Hernando, A. Plastino, A. R. Plastino, MaxEnt and dynamical information, arXiv:1201.0889v1 [physics.data-an] 4 Jan 2012
  • Jos Uffink, The Constraint Rule of the Maximum Entropy Principle, Studies of the History and Philosophy of Modern Physics, 27, 47-49, 1996
  • Jos Uffink, Can the Maximum Entropy Principle Be Explained as a Consistency Requirement?, Stud.Hist.Phil.Mod.Phys. 26, 223-261, 1995
  • Kevin H. Knuth, The Origin of Probability and Entropy, Bayesian inference and Maximum Entropy Methods in Science and Engineering, Sao Paulo, Brazil, 2008
  • Alfréd Rényi, On Measures of Entropy and Information Proc. Fourth Berkeley Symp. on Math. Statist. and Prob., Vol. 1 (Univ. of Calif. Press, 1961), 547-561.
  • Cox, R. T. Probability, Frequency and Reasonable Expectation American Journal of Physics, Volume 14, Issue 1, pp. 1-13 (1946)
  • P. Ván Unique additive information measures - Boltzmann-Gibbs-Shannon, Fisher and beyond Physica A, 2006, V365, p28-33
  • Shore, J., Johnson, R. Properties of cross-entropy minimization 0018-9448/81/0700-0472$00.75 1981 IEEE
  • Shore, J., Johnson, R. Axiomatic Derivation of the Principle of Maximum Entropy and the Principle of Minimum Cross-Entropy IEEE TRANSACTlIONS ON lNFORMATION THEORY, VOL. m26, NO. 1, JANUARY 1980
  • Michael E. Fisher Solution of a Combinatorial Problem—Intermediate Statistics American Journal of Physics -- January 1962 -- Volume 30, Issue 1, pp. 49
  • B. Roy Frieden and Bernard H. Soffer Lagrangians of physics and the game of Fisher-information transfer Phys. Rev. E 52, 6917–6917 (1995)
  • J. M. Borwein, A. S. Lewis and D. Noll Maximum Entropy Reconstruction Using Derivative Information, Part 1: Fisher Information and Convex Duality
  • J. M. Borwein , A. S. Lewis , M. N. Limber , D. Noll Maximum Entropy Spectral Analysis Using Derivative Information Part 2: Computational Results
  • FRÖHNER F. H. Assigning uncertainties to scientific data