Difference between revisions of "Kiwi Dipole Mappings"
Line 1,351: | Line 1,351: | ||
=== Estimation for En vs I === | === Estimation for En vs I === | ||
− | + | Current (A) Energy (MeV) | |
− | 0.1 0. | + | 0.1 0.080 |
− | 0.2 0. | + | 0.2 0.147 |
− | 0.3 0. | + | 0.3 0.213 |
− | 0.4 0. | + | 0.4 0.279 |
− | 0.5 0. | + | 0.5 0.345 |
− | 0.6 0. | + | 0.6 0.411 |
− | 0.7 0. | + | 0.7 0.477 |
− | 0.8 0. | + | 0.8 0.543 |
− | 0.9 0. | + | 0.9 0.608 |
− | 1 0. | + | 1 0.674 |
− | 1.1 0. | + | 1.1 0.739 |
− | 1.2 0. | + | 1.2 0.805 |
− | 1.3 0. | + | 1.3 0.870 |
− | 1.4 0. | + | 1.4 0.935 |
− | 1.5 1 | + | 1.5 1.000 |
− | 1.6 1. | + | 1.6 1.065 |
− | 1.7 1. | + | 1.7 1.130 |
− | 1.8 1. | + | 1.8 1.194 |
− | 1.9 1. | + | 1.9 1.259 |
− | 2 1. | + | 2 1.323 |
− | 2.1 1. | + | 2.1 1.388 |
− | 2.2 1. | + | 2.2 1.452 |
− | 2.3 1. | + | 2.3 1.516 |
− | 2.4 1. | + | 2.4 1.580 |
− | 2.5 1. | + | 2.5 1.644 |
− | 2.6 1. | + | 2.6 1.708 |
− | 2.7 1. | + | 2.7 1.772 |
− | 2.8 1. | + | 2.8 1.836 |
− | 2.9 1. | + | 2.9 1.899 |
− | 3 1. | + | 3 1.963 |
− | 3.1 2. | + | 3.1 2.026 |
− | 3.2 2. | + | 3.2 2.089 |
− | 3.3 2. | + | 3.3 2.153 |
− | 3.4 2. | + | 3.4 2.216 |
− | 3.5 2. | + | 3.5 2.279 |
− | 3.6 2. | + | 3.6 2.341 |
− | 3.7 2. | + | 3.7 2.404 |
− | 3.8 2. | + | 3.8 2.467 |
− | 3.9 2. | + | 3.9 2.529 |
− | 4 2. | + | 4 2.592 |
− | 4.1 2. | + | 4.1 2.654 |
− | 4.2 2. | + | 4.2 2.716 |
− | 4.3 2. | + | 4.3 2.778 |
− | 4.4 2. | + | 4.4 2.840 |
− | 4.5 2. | + | 4.5 2.902 |
− | 4.6 2. | + | 4.6 2.964 |
− | 4.7 3. | + | 4.7 3.026 |
− | 4.8 3. | + | 4.8 3.088 |
− | 4.9 3. | + | 4.9 3.149 |
− | 5 3. | + | 5 3.211 |
− | 5.1 3. | + | 5.1 3.272 |
− | 5.2 3. | + | 5.2 3.333 |
− | 5.3 3. | + | 5.3 3.394 |
− | 5.4 3. | + | 5.4 3.455 |
− | 5.5 3. | + | 5.5 3.516 |
− | 5.6 3. | + | 5.6 3.577 |
− | 5.7 3. | + | 5.7 3.638 |
− | 5.8 3. | + | 5.8 3.698 |
− | 5.9 3. | + | 5.9 3.759 |
− | 6 3. | + | 6 3.819 |
− | 6.1 3. | + | 6.1 3.879 |
− | 6.2 3. | + | 6.2 3.939 |
− | 6.3 | + | 6.3 3.999 |
− | 6.4 4. | + | 6.4 4.059 |
− | 6.5 4. | + | 6.5 4.119 |
− | 6.6 4. | + | 6.6 4.179 |
− | 6.7 4. | + | 6.7 4.239 |
− | 6.8 4. | + | 6.8 4.298 |
− | 6.9 4. | + | 6.9 4.358 |
− | 7 4. | + | 7 4.417 |
− | 7.1 4. | + | 7.1 4.476 |
− | 7.2 4. | + | 7.2 4.536 |
− | 7.3 4. | + | 7.3 4.595 |
− | 7.4 4. | + | 7.4 4.654 |
− | 7.5 4. | + | 7.5 4.712 |
− | 7.6 4. | + | 7.6 4.771 |
− | 7.7 4. | + | 7.7 4.830 |
− | 7.8 4. | + | 7.8 4.888 |
− | 7.9 4. | + | 7.9 4.947 |
− | 8 5. | + | 8 5.005 |
− | 8.1 5. | + | 8.1 5.063 |
− | 8.2 5. | + | 8.2 5.121 |
− | 8.3 5. | + | 8.3 5.179 |
− | 8.4 5. | + | 8.4 5.237 |
− | 8.5 5. | + | 8.5 5.295 |
− | 8.6 5. | + | 8.6 5.353 |
− | 8.7 5. | + | 8.7 5.410 |
− | 8.8 5. | + | 8.8 5.468 |
− | 8.9 5. | + | 8.9 5.525 |
− | 9 5. | + | 9 5.583 |
− | 9.1 5. | + | 9.1 5.640 |
− | 9.2 5. | + | 9.2 5.697 |
− | 9.3 5. | + | 9.3 5.754 |
− | 9.4 5. | + | 9.4 5.811 |
− | 9.5 5. | + | 9.5 5.868 |
− | 9.6 5. | + | 9.6 5.924 |
− | 9.7 5. | + | 9.7 5.981 |
− | 9.8 6. | + | 9.8 6.037 |
− | 9.9 6. | + | 9.9 6.094 |
− | 10 6. | + | 10 6.150 |
− | 10.1 6. | + | 10.1 6.206 |
− | 10.2 6. | + | 10.2 6.262 |
− | 10.3 6. | + | 10.3 6.318 |
− | 10.4 6. | + | 10.4 6.374 |
− | 10.5 6. | + | 10.5 6.430 |
− | 10.6 6. | + | 10.6 6.485 |
− | 10.7 6. | + | 10.7 6.541 |
− | 10.8 6. | + | 10.8 6.596 |
− | 10.9 6. | + | 10.9 6.652 |
− | 11 6. | + | 11 6.707 |
− | 11.1 6. | + | 11.1 6.762 |
− | 11.2 6. | + | 11.2 6.817 |
− | 11.3 6. | + | 11.3 6.872 |
− | 11.4 6. | + | 11.4 6.927 |
− | 11.5 6. | + | 11.5 6.982 |
− | 11.6 7. | + | 11.6 7.036 |
− | 11.7 7. | + | 11.7 7.091 |
− | 11.8 7. | + | 11.8 7.145 |
− | 11.9 7. | + | 11.9 7.200 |
− | 12 7. | + | 12 7.254 |
− | 12.1 7. | + | 12.1 7.308 |
− | 12.2 7. | + | 12.2 7.362 |
− | 12.3 7. | + | 12.3 7.416 |
− | 12.4 7. | + | 12.4 7.470 |
− | 12.5 7. | + | 12.5 7.523 |
− | 12.6 7. | + | 12.6 7.577 |
− | 12.7 7. | + | 12.7 7.630 |
− | 12.8 7. | + | 12.8 7.684 |
− | 12.9 7. | + | 12.9 7.737 |
− | 13 7. | + | 13 7.790 |
− | 13.1 7. | + | 13.1 7.843 |
− | 13.2 7. | + | 13.2 7.896 |
− | 13.3 7. | + | 13.3 7.949 |
− | 13.4 8 | + | 13.4 8.002 |
− | 13.5 8. | + | 13.5 8.055 |
− | 13.6 8. | + | 13.6 8.107 |
− | 13.7 8. | + | 13.7 8.160 |
− | 13.8 8. | + | 13.8 8.212 |
− | 13.9 8. | + | 13.9 8.264 |
− | 14 8. | + | 14 8.317 |
− | 14.1 8. | + | 14.1 8.369 |
− | 14.2 8. | + | 14.2 8.421 |
− | 14.3 8. | + | 14.3 8.472 |
− | 14.4 8. | + | 14.4 8.524 |
− | 14.5 8. | + | 14.5 8.576 |
− | 14.6 8. | + | 14.6 8.627 |
− | 14.7 8. | + | 14.7 8.679 |
− | 14.8 8. | + | 14.8 8.730 |
− | 14.9 8. | + | 14.9 8.781 |
− | 15 8. | + | 15 8.833 |
− | 15.1 8. | + | 15.1 8.884 |
− | 15.2 8. | + | 15.2 8.934 |
− | 15.3 8. | + | 15.3 8.985 |
− | 15.4 9. | + | 15.4 9.036 |
− | 15.5 9. | + | 15.5 9.087 |
− | 15.6 9. | + | 15.6 9.137 |
− | 15.7 9. | + | 15.7 9.188 |
− | 15.8 9. | + | 15.8 9.238 |
− | 15.9 9. | + | 15.9 9.288 |
− | 16 9. | + | 16 9.338 |
− | 16.1 9. | + | 16.1 9.388 |
− | 16.2 9. | + | 16.2 9.438 |
− | 16.3 9. | + | 16.3 9.488 |
− | 16.4 9. | + | 16.4 9.538 |
− | 16.5 9. | + | 16.5 9.587 |
− | 16.6 9. | + | 16.6 9.637 |
− | 16.7 9. | + | 16.7 9.686 |
− | 16.8 9. | + | 16.8 9.735 |
− | 16.9 9. | + | 16.9 9.784 |
− | 17 9. | + | 17 9.834 |
− | 17.1 9. | + | 17.1 9.883 |
− | 17.2 9. | + | 17.2 9.931 |
− | 17.3 9. | + | 17.3 9.980 |
− | 17.4 10. | + | 17.4 10.029 |
− | 17.5 10. | + | 17.5 10.077 |
− | 17.6 10. | + | 17.6 10.126 |
− | 17.7 10. | + | 17.7 10.174 |
− | 17.8 10. | + | 17.8 10.222 |
− | 17.9 10. | + | 17.9 10.271 |
− | 18 10. | + | 18 10.319 |
− | 18.1 10. | + | 18.1 10.367 |
− | 18.2 10. | + | 18.2 10.414 |
− | 18.3 10. | + | 18.3 10.462 |
− | 18.4 10. | + | 18.4 10.510 |
− | 18.5 10. | + | 18.5 10.557 |
− | 18.6 10. | + | 18.6 10.605 |
− | 18.7 10. | + | 18.7 10.652 |
− | 18.8 10. | + | 18.8 10.699 |
− | 18.9 10. | + | 18.9 10.746 |
− | 19 10. | + | 19 10.793 |
− | 19.1 10. | + | 19.1 10.840 |
− | 19.2 10. | + | 19.2 10.887 |
− | 19.3 10. | + | 19.3 10.934 |
− | 19.4 10. | + | 19.4 10.981 |
− | 19.5 11. | + | 19.5 11.027 |
− | 19.6 11. | + | 19.6 11.073 |
− | 19.7 11. | + | 19.7 11.120 |
− | 19.8 11. | + | 19.8 11.166 |
− | 19.9 11. | + | 19.9 11.212 |
− | 20 11. | + | 20 11.258 |
− | 20.1 11. | + | 20.1 11.304 |
− | 20.2 11. | + | 20.2 11.350 |
− | 20.3 11. | + | 20.3 11.395 |
− | 20.4 11. | + | 20.4 11.441 |
− | 20.5 11. | + | 20.5 11.486 |
− | 20.6 11. | + | 20.6 11.532 |
− | 20.7 11. | + | 20.7 11.577 |
− | 20.8 11. | + | 20.8 11.622 |
− | 20.9 11. | + | 20.9 11.667 |
− | 21 11. | + | 21 11.712 |
− | 21.1 11. | + | 21.1 11.757 |
− | 21.2 11. | + | 21.2 11.802 |
− | 21.3 11. | + | 21.3 11.847 |
− | 21.4 11. | + | 21.4 11.891 |
− | 21.5 11. | + | 21.5 11.936 |
− | 21.6 11. | + | 21.6 11.980 |
− | 21.7 12. | + | 21.7 12.024 |
− | 21.8 12. | + | 21.8 12.068 |
− | 21.9 12. | + | 21.9 12.112 |
− | 22 12. | + | 22 12.156 |
− | 22.1 12. | + | 22.1 12.200 |
− | 22.2 12. | + | 22.2 12.244 |
− | 22.3 12. | + | 22.3 12.287 |
− | 22.4 12. | + | 22.4 12.331 |
− | 22.5 12. | + | 22.5 12.374 |
− | 22.6 12. | + | 22.6 12.418 |
− | 22.7 12. | + | 22.7 12.461 |
− | 22.8 12. | + | 22.8 12.504 |
− | 22.9 12. | + | 22.9 12.547 |
− | 23 12. | + | 23 12.590 |
− | 23.1 12. | + | 23.1 12.633 |
− | 23.2 12. | + | 23.2 12.675 |
− | 23.3 12. | + | 23.3 12.718 |
− | 23.4 12. | + | 23.4 12.761 |
− | 23.5 12. | + | 23.5 12.803 |
− | 23.6 12. | + | 23.6 12.845 |
− | 23.7 12. | + | 23.7 12.887 |
− | 23.8 12. | + | 23.8 12.929 |
− | 23.9 12. | + | 23.9 12.971 |
− | 24 13. | + | 24 13.013 |
− | 24.1 13. | + | 24.1 13.055 |
− | 24.2 13. | + | 24.2 13.097 |
− | 24.3 13. | + | 24.3 13.138 |
− | 24.4 13. | + | 24.4 13.180 |
− | 24.5 13. | + | 24.5 13.221 |
− | 24.6 13. | + | 24.6 13.262 |
− | 24.7 13. | + | 24.7 13.304 |
− | 24.8 13. | + | 24.8 13.345 |
− | 24.9 13. | + | 24.9 13.386 |
− | 25 13. | + | 25 13.427 |
− | 25.1 13. | + | 25.1 13.467 |
− | 25.2 13. | + | 25.2 13.508 |
− | 25.3 13. | + | 25.3 13.548 |
− | 25.4 13. | + | 25.4 13.589 |
− | 25.5 13. | + | 25.5 13.629 |
− | 25.6 13. | + | 25.6 13.669 |
− | 25.7 13. | + | 25.7 13.710 |
− | 25.8 13. | + | 25.8 13.750 |
− | 25.9 13. | + | 25.9 13.790 |
− | 26 13. | + | 26 13.829 |
− | 26.1 13. | + | 26.1 13.869 |
− | 26.2 13. | + | 26.2 13.909 |
− | 26.3 13. | + | 26.3 13.948 |
− | 26.4 13. | + | 26.4 13.988 |
− | 26.5 14. | + | 26.5 14.027 |
− | 26.6 14. | + | 26.6 14.066 |
− | 26.7 14. | + | 26.7 14.105 |
− | 26.8 14. | + | 26.8 14.144 |
− | 26.9 14. | + | 26.9 14.183 |
− | 27 14. | + | 27 14.222 |
− | 27.1 14. | + | 27.1 14.261 |
− | 27.2 14. | + | 27.2 14.299 |
− | 27.3 14. | + | 27.3 14.338 |
− | 27.4 14. | + | 27.4 14.376 |
− | 27.5 14. | + | 27.5 14.414 |
− | 27.6 14. | + | 27.6 14.453 |
− | 27.7 14. | + | 27.7 14.491 |
− | 27.8 14. | + | 27.8 14.529 |
− | 27.9 14. | + | 27.9 14.566 |
− | 28 14. | + | 28 14.604 |
− | 28.1 14. | + | 28.1 14.642 |
− | 28.2 14. | + | 28.2 14.679 |
− | 28.3 14. | + | 28.3 14.717 |
− | 28.4 14. | + | 28.4 14.754 |
− | 28.5 14. | + | 28.5 14.792 |
− | 28.6 14. | + | 28.6 14.829 |
− | 28.7 14. | + | 28.7 14.866 |
− | 28.8 14. | + | 28.8 14.903 |
− | 28.9 14. | + | 28.9 14.940 |
− | 29 14. | + | 29 14.976 |
− | 29.1 15. | + | 29.1 15.013 |
− | 29.2 15. | + | 29.2 15.049 |
− | 29.3 15. | + | 29.3 15.086 |
− | 29.4 15. | + | 29.4 15.122 |
− | 29.5 15. | + | 29.5 15.158 |
− | 29.6 15. | + | 29.6 15.195 |
− | 29.7 15. | + | 29.7 15.231 |
− | 29.8 15. | + | 29.8 15.266 |
− | 29.9 15. | + | 29.9 15.302 |
− | 30 15. | + | 30 15.338 |
− | 30.1 15. | + | 30.1 15.374 |
− | 30.2 15. | + | 30.2 15.409 |
− | 30.3 15. | + | 30.3 15.445 |
− | 30.4 15. | + | 30.4 15.480 |
− | 30.5 15. | + | 30.5 15.515 |
− | 30.6 15. | + | 30.6 15.550 |
− | 30.7 15. | + | 30.7 15.585 |
− | 30.8 15. | + | 30.8 15.620 |
− | 30.9 15. | + | 30.9 15.655 |
− | 31 15. | + | 31 15.689 |
− | 31.1 15. | + | 31.1 15.724 |
− | 31.2 15. | + | 31.2 15.759 |
− | 31.3 15. | + | 31.3 15.793 |
− | 31.4 15. | + | 31.4 15.827 |
− | 31.5 15. | + | 31.5 15.861 |
− | 31.6 15. | + | 31.6 15.895 |
− | 31.7 15. | + | 31.7 15.929 |
− | 31.8 15. | + | 31.8 15.963 |
− | 31.9 | + | 31.9 15.997 |
− | 32 16. | + | 32 16.031 |
− | 32.1 16. | + | 32.1 16.064 |
− | 32.2 16. | + | 32.2 16.098 |
− | 32.3 16. | + | 32.3 16.131 |
− | 32.4 16. | + | 32.4 16.164 |
− | 32.5 16. | + | 32.5 16.197 |
− | 32.6 16. | + | 32.6 16.230 |
− | 32.7 16. | + | 32.7 16.263 |
− | 32.8 16. | + | 32.8 16.296 |
− | 32.9 16. | + | 32.9 16.329 |
− | 33 16. | + | 33 16.362 |
− | 33.1 16. | + | 33.1 16.394 |
− | 33.2 16. | + | 33.2 16.426 |
− | 33.3 16. | + | 33.3 16.459 |
− | 33.4 16. | + | 33.4 16.491 |
− | 33.5 16. | + | 33.5 16.523 |
− | 33.6 16. | + | 33.6 16.555 |
− | 33.7 16. | + | 33.7 16.587 |
− | 33.8 16. | + | 33.8 16.619 |
− | 33.9 16. | + | 33.9 16.651 |
− | 34 16. | + | 34 16.682 |
− | 34.1 16. | + | 34.1 16.714 |
− | 34.2 16. | + | 34.2 16.745 |
− | 34.3 16. | + | 34.3 16.776 |
− | 34.4 16. | + | 34.4 16.808 |
− | 34.5 16. | + | 34.5 16.839 |
− | 34.6 16. | + | 34.6 16.870 |
− | 34.7 16. | + | 34.7 16.900 |
− | 34.8 16. | + | 34.8 16.931 |
− | 34.9 16. | + | 34.9 16.962 |
− | 35 16. | + | 35 16.993 |
− | 35.1 17. | + | 35.1 17.023 |
− | 35.2 17. | + | 35.2 17.053 |
− | 35.3 17. | + | 35.3 17.084 |
− | 35.4 17. | + | 35.4 17.114 |
− | 35.5 17. | + | 35.5 17.144 |
− | 35.6 17. | + | 35.6 17.174 |
− | 35.7 17. | + | 35.7 17.204 |
− | 35.8 17. | + | 35.8 17.233 |
− | 35.9 17. | + | 35.9 17.263 |
− | 36 17. | + | 36 17.293 |
− | 36.1 17. | + | 36.1 17.322 |
− | 36.2 17. | + | 36.2 17.351 |
− | 36.3 17. | + | 36.3 17.381 |
− | 36.4 17. | + | 36.4 17.410 |
− | 36.5 17. | + | 36.5 17.439 |
− | 36.6 17. | + | 36.6 17.468 |
− | 36.7 17. | + | 36.7 17.496 |
− | 36.8 17. | + | 36.8 17.525 |
− | 36.9 17. | + | 36.9 17.554 |
− | 37 17. | + | 37 17.582 |
− | 37.1 17. | + | 37.1 17.611 |
− | 37.2 17. | + | 37.2 17.639 |
− | 37.3 17. | + | 37.3 17.667 |
− | 37.4 17. | + | 37.4 17.695 |
− | 37.5 17. | + | 37.5 17.723 |
− | 37.6 17. | + | 37.6 17.751 |
− | 37.7 17. | + | 37.7 17.779 |
− | 37.8 17. | + | 37.8 17.807 |
− | 37.9 17. | + | 37.9 17.834 |
− | 38 17. | + | 38 17.862 |
− | 38.1 17. | + | 38.1 17.889 |
− | 38.2 17. | + | 38.2 17.917 |
− | 38.3 17. | + | 38.3 17.944 |
− | 38.4 17. | + | 38.4 17.971 |
− | 38.5 | + | 38.5 17.998 |
− | 38.6 18. | + | 38.6 18.025 |
− | 38.7 18. | + | 38.7 18.051 |
− | 38.8 18. | + | 38.8 18.078 |
− | 38.9 18. | + | 38.9 18.105 |
− | 39 18. | + | 39 18.131 |
− | 39.1 18. | + | 39.1 18.157 |
− | 39.2 18. | + | 39.2 18.184 |
− | 39.3 18. | + | 39.3 18.210 |
− | 39.4 18. | + | 39.4 18.236 |
− | 39.5 18. | + | 39.5 18.262 |
− | 39.6 18. | + | 39.6 18.288 |
− | 39.7 18. | + | 39.7 18.313 |
− | 39.8 18. | + | 39.8 18.339 |
− | 39.9 18. | + | 39.9 18.365 |
− | 40 18. | + | 40 18.390 |
− | 40.1 18. | + | 40.1 18.415 |
− | 40.2 18. | + | 40.2 18.441 |
− | 40.3 18. | + | 40.3 18.466 |
− | 40.4 18. | + | 40.4 18.491 |
− | 40.5 18. | + | 40.5 18.516 |
− | 40.6 18. | + | 40.6 18.540 |
− | 40.7 18. | + | 40.7 18.565 |
− | 40.8 18. | + | 40.8 18.590 |
− | 40.9 18. | + | 40.9 18.614 |
− | 41 18. | + | 41 18.639 |
− | 41.1 18. | + | 41.1 18.663 |
− | 41.2 18. | + | 41.2 18.687 |
− | 41.3 18. | + | 41.3 18.711 |
− | 41.4 18. | + | 41.4 18.735 |
− | 41.5 18. | + | 41.5 18.759 |
− | 41.6 18. | + | 41.6 18.783 |
− | 41.7 18. | + | 41.7 18.807 |
− | 41.8 18. | + | 41.8 18.830 |
− | 41.9 18. | + | 41.9 18.854 |
− | 42 18. | + | 42 18.877 |
− | 42.1 18. | + | 42.1 18.900 |
− | 42.2 18. | + | 42.2 18.923 |
− | 42.3 18. | + | 42.3 18.947 |
− | 42.4 18. | + | 42.4 18.970 |
− | 42.5 18. | + | 42.5 18.992 |
− | 42.6 19. | + | 42.6 19.015 |
− | 42.7 19. | + | 42.7 19.038 |
− | 42.8 19. | + | 42.8 19.060 |
− | 42.9 19. | + | 42.9 19.083 |
− | 43 19. | + | 43 19.105 |
− | 43.1 19. | + | 43.1 19.127 |
− | 43.2 19. | + | 43.2 19.150 |
− | 43.3 19. | + | 43.3 19.172 |
− | 43.4 19. | + | 43.4 19.194 |
− | 43.5 19. | + | 43.5 19.215 |
− | 43.6 19. | + | 43.6 19.237 |
− | 43.7 19. | + | 43.7 19.259 |
− | 43.8 19. | + | 43.8 19.280 |
− | 43.9 19. | + | 43.9 19.302 |
− | 44 19. | + | 44 19.323 |
− | 44.1 19. | + | 44.1 19.344 |
− | 44.2 19. | + | 44.2 19.365 |
− | 44.3 19. | + | 44.3 19.386 |
− | 44.4 19. | + | 44.4 19.407 |
− | 44.5 19. | + | 44.5 19.428 |
− | 44.6 19. | + | 44.6 19.449 |
− | 44.7 19. | + | 44.7 19.469 |
− | 44.8 19. | + | 44.8 19.490 |
− | 44.9 19. | + | 44.9 19.510 |
− | 45 19. | + | 45 19.531 |
− | 45.1 19. | + | 45.1 19.551 |
− | 45.2 19. | + | 45.2 19.571 |
− | 45.3 19. | + | 45.3 19.591 |
− | 45.4 19. | + | 45.4 19.611 |
− | 45.5 19. | + | 45.5 19.630 |
− | 45.6 19. | + | 45.6 19.650 |
− | 45.7 19. | + | 45.7 19.670 |
− | 45.8 19. | + | 45.8 19.689 |
− | 45.9 19. | + | 45.9 19.708 |
− | 46 19. | + | 46 19.728 |
− | 46.1 19. | + | 46.1 19.747 |
− | 46.2 19. | + | 46.2 19.766 |
− | 46.3 19. | + | 46.3 19.785 |
− | 46.4 19. | + | 46.4 19.804 |
− | 46.5 19. | + | 46.5 19.823 |
− | 46.6 19. | + | 46.6 19.841 |
− | 46.7 19. | + | 46.7 19.860 |
− | 46.8 19. | + | 46.8 19.878 |
− | 46.9 19. | + | 46.9 19.897 |
− | 47 19. | + | 47 19.915 |
− | 47.1 19. | + | 47.1 19.933 |
− | 47.2 19. | + | 47.2 19.951 |
− | 47.3 19. | + | 47.3 19.969 |
− | 47.4 19. | + | 47.4 19.987 |
− | 47.5 20 | + | 47.5 20.004 |
− | 47.6 20. | + | 47.6 20.022 |
− | 47.7 20. | + | 47.7 20.040 |
− | 47.8 20. | + | 47.8 20.057 |
− | 47.9 20. | + | 47.9 20.074 |
− | 48 20. | + | 48 20.091 |
− | 48.1 20. | + | 48.1 20.109 |
− | 48.2 20. | + | 48.2 20.126 |
− | 48.3 20. | + | 48.3 20.142 |
− | 48.4 20. | + | 48.4 20.159 |
− | 48.5 20. | + | 48.5 20.176 |
− | 48.6 20. | + | 48.6 20.193 |
− | 48.7 20. | + | 48.7 20.209 |
− | 48.8 20. | + | 48.8 20.225 |
− | 48.9 20. | + | 48.9 20.242 |
− | 49 20. | + | 49 20.258 |
− | 49.1 20. | + | 49.1 20.274 |
− | 49.2 20. | + | 49.2 20.290 |
− | 49.3 20. | + | 49.3 20.306 |
− | 49.4 20. | + | 49.4 20.322 |
− | 49.5 20. | + | 49.5 20.337 |
− | 49.6 20. | + | 49.6 20.353 |
− | 49.7 20. | + | 49.7 20.368 |
− | 49.8 20. | + | 49.8 20.384 |
− | 49.9 20. | + | 49.9 20.399 |
− | 50 20. | + | 50 20.414 |
− | 50.1 20. | + | 50.1 20.429 |
− | 50.2 20. | + | 50.2 20.444 |
− | 50.3 20. | + | 50.3 20.459 |
− | 50.4 20. | + | 50.4 20.474 |
− | 50.5 20. | + | 50.5 20.488 |
− | 50.6 20. | + | 50.6 20.503 |
− | 50.7 20. | + | 50.7 20.517 |
− | 50.8 20. | + | 50.8 20.532 |
− | 50.9 20. | + | 50.9 20.546 |
− | 51 20. | + | 51 20.560 |
− | 51.1 20. | + | 51.1 20.574 |
− | 51.2 20. | + | 51.2 20.588 |
− | 51.3 20. | + | 51.3 20.602 |
− | 51.4 20. | + | 51.4 20.615 |
− | 51.5 20. | + | 51.5 20.629 |
− | 51.6 20. | + | 51.6 20.642 |
− | 51.7 20. | + | 51.7 20.656 |
− | 51.8 20. | + | 51.8 20.669 |
− | 51.9 20. | + | 51.9 20.682 |
− | 52 20. | + | 52 20.695 |
− | 52.1 20. | + | 52.1 20.708 |
− | 52.2 20. | + | 52.2 20.721 |
− | 52.3 20. | + | 52.3 20.734 |
− | 52.4 20. | + | 52.4 20.747 |
− | 52.5 20. | + | 52.5 20.759 |
− | 52.6 20. | + | 52.6 20.772 |
− | 52.7 20. | + | 52.7 20.784 |
− | 52.8 20. | + | 52.8 20.797 |
− | 52.9 20. | + | 52.9 20.809 |
− | 53 20. | + | 53 20.821 |
− | 53.1 20. | + | 53.1 20.833 |
− | 53.2 20. | + | 53.2 20.845 |
− | 53.3 20. | + | 53.3 20.856 |
− | 53.4 20. | + | 53.4 20.868 |
− | 53.5 20. | + | 53.5 20.880 |
− | 53.6 20. | + | 53.6 20.891 |
− | 53.7 20. | + | 53.7 20.902 |
− | 53.8 20. | + | 53.8 20.914 |
− | 53.9 20. | + | 53.9 20.925 |
− | 54 20. | + | 54 20.936 |
− | 54.1 20. | + | 54.1 20.947 |
− | 54.2 20. | + | 54.2 20.958 |
− | 54.3 20. | + | 54.3 20.968 |
− | 54.4 20. | + | 54.4 20.979 |
− | 54.5 20. | + | 54.5 20.989 |
− | 54.6 21 | + | 54.6 21.000 |
− | 54.7 21. | + | 54.7 21.010 |
− | 54.8 21. | + | 54.8 21.020 |
− | 54.9 21. | + | 54.9 21.030 |
− | 55 21. | + | 55 21.041 |
− | 55.1 21. | + | 55.1 21.050 |
− | 55.2 21. | + | 55.2 21.060 |
− | 55.3 21. | + | 55.3 21.070 |
− | 55.4 21. | + | 55.4 21.080 |
− | 55.5 21. | + | 55.5 21.089 |
− | 55.6 21. | + | 55.6 21.098 |
− | 55.7 21. | + | 55.7 21.108 |
− | 55.8 21. | + | 55.8 21.117 |
− | 55.9 21. | + | 55.9 21.126 |
− | 56 21. | + | 56 21.135 |
− | 56.1 21. | + | 56.1 21.144 |
− | 56.2 21. | + | 56.2 21.153 |
− | 56.3 21. | + | 56.3 21.161 |
− | 56.4 21. | + | 56.4 21.170 |
− | 56.5 21. | + | 56.5 21.178 |
− | 56.6 21. | + | 56.6 21.187 |
− | 56.7 21. | + | 56.7 21.195 |
− | 56.8 21. | + | 56.8 21.203 |
− | 56.9 21. | + | 56.9 21.211 |
− | 57 21. | + | 57 21.219 |
− | 57.1 21. | + | 57.1 21.227 |
− | 57.2 21. | + | 57.2 21.235 |
− | 57.3 21. | + | 57.3 21.242 |
− | 57.4 21. | + | 57.4 21.250 |
− | 57.5 21. | + | 57.5 21.257 |
− | 57.6 21. | + | 57.6 21.265 |
− | 57.7 21. | + | 57.7 21.272 |
− | 57.8 21. | + | 57.8 21.279 |
− | 57.9 21. | + | 57.9 21.286 |
− | 58 21. | + | 58 21.293 |
− | 58.1 21. | + | 58.1 21.300 |
− | 58.2 21. | + | 58.2 21.307 |
− | 58.3 21. | + | 58.3 21.313 |
− | 58.4 21. | + | 58.4 21.320 |
− | 58.5 21. | + | 58.5 21.326 |
− | 58.6 21. | + | 58.6 21.332 |
− | 58.7 21. | + | 58.7 21.339 |
− | 58.8 21. | + | 58.8 21.345 |
− | 58.9 21. | + | 58.9 21.351 |
− | 59 21. | + | 59 21.357 |
− | 59.1 21. | + | 59.1 21.362 |
− | 59.2 21. | + | 59.2 21.368 |
− | 59.3 21. | + | 59.3 21.374 |
− | 59.4 21. | + | 59.4 21.379 |
− | 59.5 21. | + | 59.5 21.385 |
− | 59.6 21. | + | 59.6 21.390 |
− | 59.7 21. | + | 59.7 21.395 |
− | 59.8 21. | + | 59.8 21.400 |
− | 59.9 21. | + | 59.9 21.405 |
− | 60 21. | + | 60 21.410 |
− | 60.1 21. | + | 60.1 21.415 |
− | 60.2 21. | + | 60.2 21.419 |
− | 60.3 21. | + | 60.3 21.424 |
− | 60.4 21. | + | 60.4 21.428 |
− | 60.5 21. | + | 60.5 21.433 |
− | 60.6 21. | + | 60.6 21.437 |
− | 60.7 21. | + | 60.7 21.441 |
− | 60.8 21. | + | 60.8 21.445 |
− | 60.9 21. | + | 60.9 21.449 |
− | 61 21. | + | 61 21.453 |
− | 61.1 21. | + | 61.1 21.457 |
− | 61.2 21. | + | 61.2 21.460 |
− | 61.3 21. | + | 61.3 21.464 |
− | 61.4 21. | + | 61.4 21.467 |
− | 61.5 21. | + | 61.5 21.471 |
− | 61.6 21. | + | 61.6 21.474 |
− | 61.7 21. | + | 61.7 21.477 |
− | 61.8 21. | + | 61.8 21.480 |
− | 61.9 21. | + | 61.9 21.483 |
− | 62 21. | + | 62 21.486 |
− | 62.1 21. | + | 62.1 21.489 |
− | 62.2 21. | + | 62.2 21.491 |
− | 62.3 21. | + | 62.3 21.494 |
− | 62.4 21. | + | 62.4 21.496 |
− | 62.5 21. | + | 62.5 21.498 |
− | 62.6 21. | + | 62.6 21.501 |
− | 62.7 21. | + | 62.7 21.503 |
Revision as of 06:54, 25 October 2012
Kiwi Dipole Documents
Cad drawing of kiwi dipole:
File:Hrrl pos wiki dipole 1.pdf File:Hrrl pos wiki dipole 2.pdf File:Hrrl pos wiki dipole 3.pdf File:Hrrl pos wiki dipole 4.pdf File:Hrrl pos wiki dipole 5.pdf
Bending Radius of the kiwi dipole is 318.5 mm, and it bends beam by 45 degree.
The path of the beam in the dipole then
1st Mapping
File:Kiwi Dipole Magnet Mappings.pdf
Tag Number: 079220
Bending magnet that was to be used with LCS (compact magnets) The horizontal and vertical tranlator have a range for 150 mm i.e. 15 cm.
Power on I = 20.4 A
x (mm) | y (mm) | B (kG) | |
127 | 0 | ||
127 | 10 | -0.106 | |
127 | 20 | -0.169 | |
127 | 30 | -0.2729 | |
127 | 40 | -0.448 | |
127 | 50 | -0.728 | |
127 | 60 | -0.97 | |
127 | 70 | -1.025 | |
127 | 80 | -1.029 | |
127 | 90 | -1.03 | |
127 | 100 | -1.029 | |
127 | 110 | -1.028 | |
127 | 120 | -1.028 | |
127 | 130 | -1.028 | |
127 | 140 | -1.028 | |
127 | 150 | -1.028 | |
y = 150 mm is roughly center of the bend. | |||
127 | 150 | -1.028 | |
127 | 140 | -1.031 | |
127 | 130 | -1.0342 | |
127 | 120 | -1.036 | |
127 | 110 | -1.036 | |
127 | 100 | -1.036 | |
127 | 90 | -1.036 | |
127 | 80 | -1.0355 | |
127 | 70 | -1.03 | |
127 | 60 | -0.977 | |
127 | 50 | -0.7354 | |
127 | 40 | -0.4527 | |
127 | 30 | -0.275 | |
127 | 20 | -0.17 | |
127 | 10 | -0.1066 | |
127 | 0 | -0.0673 | |
Again | |||
x (mm) | y (mm) | B (kG) | |
127 | 0 | ||
127 | 10 | -0.1062 | |
127 | 20 | -0.1699 | |
127 | 30 | -0.2738 | |
127 | 40 | -0.449 | |
127 | 50 | -0.7283 | edge of poles 100 px |
127 | 60 | -0.9712 | |
127 | 70 | -1.0253 | |
127 | 80 | -1.03 | |
127 | 90 | -1.03 | |
127 | 100 | -1.0298 | |
127 | 110 | -1.028 | |
127 | 120 | -1.0285 | |
127 | 130 | -1.0286 | |
127 | 140 | -1.0282 | |
127 | 150 | -1.0278 |
y (mm) B (kG) error B (kG) 0.00000 -0.06717 0.00015 10.00000 -0.10627 0.00031 20.00000 -0.16963 0.00055 30.00000 -0.27390 0.00105 40.00000 -0.44990 0.00248 50.00000 -0.73057 0.00419 60.00000 -0.97273 0.00374 70.00000 -1.02677 0.00280 80.00000 -1.03150 0.00350 90.00000 -1.03200 0.00346 100.00000 -1.03160 0.00383 110.00000 -1.03067 0.00462 120.00000 -1.03083 0.00448 130.00000 -1.03027 0.00342 140.00000 -1.02907 0.00168 150.00000 -1.02793 0.00012
X at 127, Y at 150
x (mm) | y (mm) | I | B (kG) | |
127 | 150 | 20.1 | -1.0279 | |
127 | 150 | 30.1 | -1.53 | |
127 | 150 | 25.1 | -1.2916 | |
127 | 150 | 20.1 | -1.0359 | |
127 | 150 | 15 | -0.781 | |
127 | 150 | 10 | -0.534 | |
127 | 150 | 5 | -0.277 | |
127 | 150 | 0 | -0.017 | |
Again | ||||
127 | 150 | 0 | -0.01726 | |
127 | 150 | 5 | -0.266 | |
127 | 150 | 10 | -0.518 | |
127 | 150 | 15 | -0.7713 | |
127 | 150 | 20 | -1.02 | |
127 | 150 | 25 | -1.272 | |
127 | 150 | 30 | -1.52 |
I (Amps) B (kG) error B (kG) 0.00000 -0.01713 0.00018 5.00000 -0.27150 0.00778 10.00000 -0.52600 0.01131 15.00000 -0.77615 0.00686 20.00000 -1.02795 0.01124 25.00000 -1.28180 0.01386 30.00000 -1.52500 0.00707
Vertical Scan
Power on I = 20 A
Gap width
5cm.x (mm) | y (mm) | B (kG) | |
135 (lower edge) | 150 | -1.0369 | |
132 | 150 | -1.0379 | |
129 | 150 | -1.0382 | |
126 | 150 | -1.0384 | |
123 | 150 | -1.0385 | |
120 | 150 | -1.0386 | |
118 | 150 | -1.0387 | |
116 | 150 | -1.0388 | |
114 | 150 | -1.039 |
x (mm) y(mm) B(kG) 135.0000 150.0000 -1.0369 132.0000 150.0000 -1.0379 129.0000 150.0000 -1.0382 126.0000 150.0000 -1.0384 123.0000 150.0000 -1.0385 120.0000 150.0000 -1.0386 118.0000 150.0000 -1.0387 116.0000 150.0000 -1.0388 114.0000 150.0000 -1.0390
Horizontal Scan
go for X = 124.5, y = 150 (dipole center), I = 20 A.
x (mm) | y (mm) | I (A) | B (kG) | |
124.5 | 150 | 20 | -1.0388 | |
124.5 | 140 | 20 | -1.04 | |
124.5 | 130 | 20 | -1.04 | |
124.5 | 120 | 20 | -1.0409 | |
124.5 | 110 | 20 | -1.041 | |
124.5 | 100 | 20 | -1.0411 | |
124.5 | 90 | 20 | -1.041 | |
124.5 | 80 | 20 | -1.0408 | |
124.5 | 70 | 20 | -1.355 | This data is problematic. |
124.5 | 60 | 20 | -0.9799 | |
124.5 | 50 | 20 | -0.74 | |
124.5 | 40 | 20 | -0.457 | |
124.5 | 30 | 20 | -0.2776 | |
124.5 | 20 | 20 | -0.1718 | |
124.5 | 0 | 20 | -0.0684 |
Figure according to the data above. There is problem when y = 70 mm.
x (mm) y (mm) I (A) B (kG) 124.50000 150.00000 20.00000 -1.03880 124.50000 140.00000 20.00000 -1.04000 124.50000 130.00000 20.00000 -1.04000 124.50000 120.00000 20.00000 -1.04090 124.50000 110.00000 20.00000 -1.04100 124.50000 100.00000 20.00000 -1.04110 124.50000 90.00000 20.00000 -1.04100 124.50000 80.00000 20.00000 -1.04080 124.50000 70.00000 20.00000 -1.03550 124.50000 60.00000 20.00000 -0.97990 124.50000 50.00000 20.00000 -0.74000 124.50000 40.00000 20.00000 -0.45700 124.50000 30.00000 20.00000 -0.27760 124.50000 20.00000 20.00000 -0.17180 124.50000 0.00000 20.00000 -0.06840
Figure according to the data above. The problem when y = 70 mm is changed to -1.0355
Power on X = 124.5, Y = 150
x (mm) | y (mm) | I (A) | B (kG) | |
124.5 | 150 | 0 | -0.0123 | |
124.5 | 150 | 5 | -0.2676 | |
124.5 | 150 | 10 | -0.516 | |
124.5 | 150 | 15 | -0.771 | |
124.5 | 150 | 20 | -1.028 | |
124.5 | 150 | 25 | -1.2735 | |
124.5 | 150 | 30 | -1.5217 | |
124.5 | 150 | 30 | -1.5218 | |
124.5 | 150 | 25 | -1.287 | |
124.5 | 150 | 20 | -1.037 | |
124.5 | 150 | 15 | -0.7855 | |
124.5 | 150 | 10 | -0.5313 | |
124.5 | 150 | 5 | -0.2747 | |
124.5 | 150 | 0 | -0.0164 |
I (A) B(kG) error B(kG) 30.00000 -1.52175 0.00007 25.00000 -1.28025 0.00955 20.00000 -1.03250 0.00636 15.00000 -0.77825 0.01025 10.00000 -0.52365 0.01082 5.00000 -0.27115 0.00502 0.00000 -0.01435 0.00290
Tag Number: 42125
x (mm) | y (mm) | I (A) | B (kG) | |
0 | 0 | Power off | ||
0 | 0 | 20 | ||
111.75 | 0 | 20 |
x (mm) | y (mm) | I (A) | B (kG) |
111.75 | 10 | 20 | 0.0637 |
111.75 | 20 | 20 | 0.102 |
111.75 | 30 | 20 | 0.1675 |
111.75 | 40 | 20 | 0.2774 |
111.75 | 50 | 20 | 0.4654 |
111.75 | 60 | 20 | 0.756 |
111.75 | 70 | 20 | 0.9898 |
111.75 | 80 | 20 | 1.0312 |
111.75 | 90 | 20 | 1.0358 |
111.75 | 100 | 20 | 1.0362 |
111.75 | 110 | 20 | 1.0363 |
111.75 | 120 | 20 | 1.0363 |
111.75 | 130 | 20 | 1.0362 |
111.75 | 140 | 20 | 1.036 |
111.75 | 150 | 20 | 1.036 |
111.75 | 0 | 20 | 0.0402 |
111.75 | 10 | 20 | 0.0635 |
111.75 | 20 | 20 | 0.1022 |
111.75 | 30 | 20 | 0.1674 |
111.75 | 40 | 20 | 0.2773 |
111.75 | 50 | 20 | 0.4652 |
111.75 | 60 | 20 | 0.755 |
111.75 | 70 | 20 | 0.9828 |
111.75 | 80 | 20 | 1.0312 |
111.75 | 90 | 20 | 1.0358 |
111.75 | 100 | 20 | 1.0362 |
111.75 | 110 | 20 | 1.0362 |
111.75 | 120 | 20 | 1.03625 |
111.75 | 130 | 20 | 1.0362 |
111.75 | 140 | 20 | 1.036 |
111.75 | 150 | 20 | 1.036 |
x (mm) | y (mm) | I (A) | B (kG) |
111.75 | 150 | 0 | 0.0076 |
111.75 | 150 | 5 | 0.263 |
111.75 | 150 | 10 | 0.52 |
111.75 | 150 | 15 | 0.7754 |
111.75 | 150 | 20 | 1.0313 |
111.75 | 150 | 25 | 1.2869 |
111.75 | 150 | 30 | 1.5389 |
111.75 | 150 | 30 | 1.5389 |
111.75 | 150 | 25 | 1.3 |
111.75 | 150 | 20 | 1.0484 |
111.75 | 150 | 15 | 0.7945 |
111.75 | 150 | 10 | 0.534 |
111.75 | 150 | 5 | 0.276 |
111.75 | 150 | 0 | 0.01386 |
x (mm) | y (mm) | I (A) | B (kG) |
123.25 | 150 | 20 | 1.0339 |
120.25.25 | 150 | 20 | 1.0338 |
117.25 | 150 | 20 | 1.034 |
114.25 | 150 | 20 | 1.034 |
111.25 | 150 | 20 | 1.0342 |
111.25 | 150 | 20 | 1.0343 |
108.25 | 150 | 20 | 1.0342 |
105.25 | 150 | 20 | 1.0343 |
102.25 | 150 | 20 | 1.0344 |
99.25 | 150 | 20 | 1.03435 |
x (mm) | y (mm) | I (A) | B (kG) |
111.25 | 150 | 20 | 1.0339 |
111.25 | 0 | 20 | 0.04 |
111.25 | 10 | 20 | 0.0633 |
111.25 | 20 | 20 | 0.102 |
111.25 | 30 | 20 | 0.1671 |
111.25 | 40 | 20 | 0.2767 |
111.25 | 50 | 20 | 0.4643 |
111.25 | 60 | 20 | 0.7544 |
111.25 | 70 | 20 | 0.9818 |
111.25 | 80 | 20 | 1.0295 |
111.25 | 90 | 20 | 1.034 |
111.25 | 100 | 20 | 1.0344 |
111.25 | 110 | 20 | 1.0345 |
111.25 | 120 | 20 | 1.0345 |
111.25 | 130 | 20 | 1.0345 |
111.25 | 140 | 20 | 4.0343 |
111.25 | 150 | 20 | 10.342 |
111.25 | 0 | 20 | 0.04 |
111.25 | 10 | 20 | 0.0632 |
111.25 | 20 | 20 | 0.1018 |
111.25 | 30 | 20 | 0.1669 |
111.25 | 40 | 20 | 0.2767 |
111.25 | 50 | 20 | 0.4639 |
111.25 | 60 | 20 | 0.754 |
111.25 | 70 | 20 | 0.9816 |
111.25 | 80 | 20 | 1.0294 |
111.25 | 90 | 20 | 1.034 |
111.25 | 100 | 20 | 1.0344 |
111.25 | 110 | 20 | 1.0344 |
111.25 | 120 | 20 | 1.0344 |
111.25 | 130 | 20 | 1.0343 |
111.25 | 140 | 20 | 4.0342 |
111.25 | 150 | 20 | 10.342 |
x (mm) | y (mm) | I (A) | B (kG) |
111.25 | 43 mm | 0 | |
111.25 | 43 mm | 5 | 0.0822 |
111.25 | 43 mm | 10 | 0.1615 |
111.25 | 43 mm | 15 | 0.242 |
111.25 | 43 mm | 20 | 0.3227 |
111.25 | 43 mm | 25 | 0.4014 |
111.25 | 43 mm | 30 | 0.4793 |
111.25 | 43 mm | 0 | |
111.25 | 43 mm | 5 | 0.08 |
111.25 | 43 mm | 10 | 0.1613 |
111.25 | 43 mm | 15 | 0.242 |
111.25 | 43 mm | 20 | 0.3215 |
111.25 | 43 mm | 25 | 0.4 |
111.25 | 43 mm | 30 | 0.4783 |
2nd Mapping
Bending radius of dipole is 319 mm. The bending radius in measurement is r = 280 mm.
Mapping of the dipole was divided into 3 parts according to the path of the ideal particle. This trajectory of particle with ideal energy should go through a fringe field (approximately straight line) and dipole field (rotation of near 45 degree with dipole bending radius of 319 mm), and another fringe field (approximately straight line). We called them A2 (entering fringe field), Rotation and A1 (Exiting fringe field).
A2
I= - 6.5 A I= - 15.25 A I= - 24 A I= - 33 A Z(mm) B (G) B (G) B (G) B (G) 81.50 -55.2500 -128.3700 200.6800 -273.6085 82.50 -52.6000 -122.1600 -191.0000 -260.3194 83.50 -50.0700 -116.2700 -181.7600 -247.6903 84.50 -47.6700 -110.6800 -173.0100 -235.7135 85.50 -45.4000 -105.3700 -164.6920 87.50 -41.1800 -95.5400 -149.2710 -203.2767 89.50 -37.3800 -86.6600 -135.3760 -184.2830 91.50 -33.9600 -78.6600 -122.8530 -167.1615 93.50 -30.8600 -71.4600 -111.5640 -151.7285 95.50 -28.0800 -64.9700 -101.3870 -137.8432 98.00 -25.1200 -57.7600 -90.1060 -122.3860 100.00 -22.8900 -52.6200 -82.0500 -111.3860 103.00 -19.9800 -45.8400 -71.4230 -96.9286 105.00 -18.2600 -41.8600 -65.1930 -88.3740 110.00 -14.6600 -33.5200 -52.1380 -70.5650 115.00 -11.8500 -27.1700 -41.9210 120.00 -9.6500 -22.0600 -34.0260 -45.8887 130.00 -6.5400 -14.8400 -22.9290 -30.7577 140.00 -4.5600 -10.2500 -15.7670 -21.0309 150.00 -3.2600 -7.2600 -11.0980 -14.7070
A1
I= - 6.505 A I= - 15.25 A I= - 24 A I= - 33 A Z(mm) B (G) B (G) Z(mm) B (G) B (G) 137.50 -69.4460 -160.7070 137.50 -252.3900 -342.9800 136.50 -66.4320 -153.7000 136.50 -241.2700 -328.0530 135.50 -63.5170 -146.9330 135.50 -230.6500 -313.6100 134.50 -60.7320 -140.4650 134.50 -220.5150 -299.7060 133.50 -58.0720 -134.2840 133.50 -210.8160 -286.0330 132.50 -128.3450 133.00 -206.0800 -279.6640 132.00 -54.3030 -125.5330 132.00 -197.0500 -267.3660 131.00 -51.9270 -120.0150 131.00 -188.4130 -255.5850 130.00 -49.6620 -114.7500 130.00 -180.1390 -244.2880 128.00 -45.4210 -104.9110 128.00 -164.6400 -223.1900 126.00 -41.5550 -95.9450 126.00 -150.5300 -204.0060 124.00 -38.0300 -87.7600 124.00 -137.6900 -186.4830 122.00 -34.8100 -80.2900 122.00 -125.9700 -170.5440 120.00 -31.8780 -73.4860 120.00 -115.2900 -156.0020 118.00 -29.2060 -67.2900 118.00 -105.5500 -142.7470 116.00 -26.7690 -61.6400 116.00 -96.6900 -130.6987 114.00 -24.6392 -56.5000 114.00 -88.6240 -119.7218 112.00 -22.6060 -51.5000 112.00 -81.2700 -109.7030 110.00 -20.7550 -47.5500 110.00 -74.5700 -100.6170 105.00 -7.6170 -38.4870 105.00 -60.3500 -81.2724 100.00 -13.6900 -31.3000 100.00 -49.0700 -65.9450 95.00 -11.2000 -25.6840 95.00 -40.1000 -53.7603 90.00 -9.2140 -21.1000 90.00 -32.9500 -44.0770 85.00 -7.6170 -17.4250 85.00 -27.3370 -36.3176 80.00 -6.3283 -14.4650 80.00 -22.6950 -30.0751 70.00 -4.4300 -10.1160 70.00 -15.8800 -20.9880 60.00 -3.1525 -7.2000 60.00 -11.3140 -14.8445 50.00 -2.2720 -5.2060 50.00 -8.1950 -10.6612 40.00 -1.6530 -3.8125 40.00 -6.0240 -7.7550 30.00 -1.2085 -2.8200 30.00 -4.4750 -5.6980 20.00 -1.8830 -2.1020 20.00 -3.3570 -4.2240 10.00 -0.6410 -1.5740 10.00 -2.3800 -3.1460 0.00 -0.4590 -1.1800 0.00 -1.9360 -0.3540
Rotation
I= - 6.505 A I= - 15.25 A I= - 24 A I= - 33 A Theta B Theta B Theta B Theta B (degree) (G) (degree) (G) (degree) (G) (degree) (G) 0.00 0.0288 0.00 -0.1150 0.00 -0.1540 0.00 -0.2640 55.00 -61.9200 55.00 -148.7800 55.00 -230.0300 55.00 -316.2940 55.50 -68.2600 55.25 -155.1740 55.50 -263.5000 55.25 -332.5850 55.60 -69.6200 55.40 -159.6800 55.40 -248.7940 55.30 -335.9620 55.55 -69.9400 55.45 -161.2270 55.60 -258.7300 55.40 -342.2980 56.00 -75.2000 55.50 -162.7950 55.50 -348.8980 57.00 -91.6000 56.00 -179.4560 56.00 -279.6800 55.60 -355.9930 58.00 -112.0400 57.00 -218.6250 57.00 -341.2300 56.00 384.8570 59.00 -137.5000 58.00 -267.4440 58.00 -417.3400 57.00 -468.7430 60.00 -169.3500 59.00 -328.7500 59.00 -512.4800 58.00 -573.3970 61.00 -208.8200 60.00 -404.8500 60.00 -631.2200 59.00 -704.0110 62.00 -254.4200 61.00 -498.4100 61.00 -777.3000 60.00 -867.4160 63.00 -298.9400 62.00 605.4600 62.00 -944.5000 61.00 -1068.4410 64.00 -327.8700 63.00 -706.3700 63.00 -1102.0000 62.00 1297.4500 65.00 -340.4800 64.00 -771.0200 64.00 -1203.0000 63.00 -1514.5900 66.00 -345.0700 65.00 -299.3600 65.00 -1247.3000 64.00 1653.1900 67.00 -346.7200 66.00 -809.8500 66.00 -1263.7700 65.00 1714.0200 68.00 -347.3000 67.00 -813.6000 67.00 -1269.6000 66.00 1736.4600 69.00 -347.5400 68.00 -814.9900 68.00 -1271.8000 67.00 1744.4900 70.00 -347.6100 69.00 -815.4800 69.00 -1272.6800 68.00 1747.3940 72.00 -347.7000 70.00 -815.6800 70.00 -1273.0000 69.00 -1748.6040 74.00 -347.7800 72.00 -815.8400 72.00 -1273.3000 70.00 1749.0000 76.00 -347.9000 74.00 -816.0100 74.00 -1273.6000 72.00 1749.3300 78.00 -347.9200 76.00 -816.2300 76.00 -1273.9500 74.00 -1749.7370 80.00 -348.0000 78.00 -816.4200 78.00 -1274.2700 76.00 -1750.1000 82.00 -348.0200 80.00 -816.5400 80.00 -1274.5000 78.00 -1750.4300 84.00 0.0500 82.00 -816.6400 82.00 -1274.7000 80.00 -1750.6940 86.00 -348.0700 84.00 -816.7200 84.00 -1274.8700 82.00 -1751.0460 88.00 -348.1000 86.00 -816.8700 86.00 -1275.1000 84.00 -1751.2660 90.00 -348.1200 88.00 -817.0000 88.00 -1275.3500 86.00 -1751.5740 92.00 -348.1200 90.00 -817.0800 90.00 -1275.5000 88.00 -1751.8930 94.00 -348.1300 92.00 -817.1700 92.00 -1275.6000 90.00 -1752.0800 96.00 -348.1200 94.00 -817.2500 94.00 -1275.7700 92.00 -1752.2120 98.00 -348.1000 96.00 -817.3100 96.00 -1275.9000 94.00 -1752.3660 100.00 -348.0700 98.00 -817.3200 98.00 -1275.8500 96.00 -1752.4760 102.00 -348.0400 100.00 -817.2600 100.00 -1275.7600 98.00 -1752.4210 103.00 -348.0100 102.00 -817.2100 102.00 -1275.6000 100.00 -1752.2230 104.00 -347.9200 103.00 -817.1200 103.00 -1275.4500 102.00 -1752.0030 105.00 -347.6700 104.00 -816.9100 104.00 -1275.1100 103.00 -1751.8050 106.00 -346.8200 105.00 -816.2700 105.00 104.00 -1751.3320 107.00 -343.8600 106.00 -813.9200 106.00 -1270.3000 105.00 -1749.8250 108.00 -334.4600 107.00 -805.8400 107.00 -1257.6000 106.00 -1744.7540 109.00 -303.6700 108.00 -778.4700 108.00 -1214.5200 107.00 -1727.3300 109.50 -280.2300 109.00 -704.9500 109.00 -1099.7000 108.00 -1668.2600 110.00 -253.5100 109.50 -648.9400 109.50 -1012.5200 108.50 1604.0420 110.50 -226.2950 110.00 -587.0300 110.00 -915.9200 109.00 -1510.1900 111.00 -201.0330 110.50 -524.0800 110.50 -817.5300 109.50 1389.5200 112.00 -156.6420 111.00 -465.1000 111.00 -725.0000 110.00 -1256.9700 113.00 -122.1500 112.00 -362.9700 112.00 -565.5800 110.50 -1122.2200 113.50 -108.0300 113.00 -283.0300 113.00 -440.9100 111.00 -996.0170 114.00 -95.7700 112.00 -777.0400 115.00 -75.4300 114.00 -221.4100 114.00 -345.2400 113.00 -605.7040 116.00 -59.7560 115.00 -174.4670 115.00 -272.1800 113.50 -535.4470 116.25 -56.3900 116.00 -138.0970 116.00 -214.8900 114.00 -474.2650 116.30 -55.7380 116.25 -130.2390 116.25 -202.6770 115.00 -373.6700 116.40 -54.4500 116.30 -128.6700 116.30 -200.3710 116.25 -295.8560 116.35 -55.0800 116.40 -125.6880 116.40 -195.7000 116.30 -275.3740 116.33 -55.3180 116.50 -122.7610 116.50 -191.1400 116.35 -272.1400 180.00 -0.1100 180.00 -0.1970 117.00 -170.1670 116.40 -268.9280 180.00 -0.1900 116.50 -262.6151 116.60 -256.8720 117.00 -233.8292 180.00 -0.2970
Mapping Origin
File:Hrrl wiki dipole map Origin File.txt
Mapping data and are under the curve
-6.5 A
Mapping at -6.5 Amp.
S B mm G Beam Magnetic Path Field 0 -5.996 5 -7.024 10 -8.265 15 -9.766 20 -11.596 25 -13.836 30 -16.596 35 -20.011 40 -24.25 45 -29.55 50 -35.96 55 -44.25 60 -54.67 65 -67.776 70 -84.225 75 -104.806 80 -130.495 85 -162.485 90 -202.426 92 -221.08 94 -241.527 96 -263.96 98 -288.57 100 -315.31 102 -344.89 104 -377.23 105.11 -395.22 107.9 -447.35 110.68 -505.17 113.46 -576.45 116.24 -629.02 119.02 -686.3 121.81 -733.05 124.59 -766.68 127.37 -788.63 132.94 -809.26 138.5 -815.77 144.07 -817.76 149.63 -818.35 155.2 -818.59 166.33 -818.79 177.46 -819.04 188.58 -819.25 199.71 -819.45 210.84 -819.59 221.97 -819.72 233.1 -819.86 244.23 -820 255.36 -820.16 266.49 -820.3 277.62 -820.4 288.75 -820.43 294.32 -820.4 305.44 -820.38 311.01 -820.24 316.57 -819.74 322.14 -817.73 324.92 -815.06 327.7 -809.82 330.49 -799.64 333.27 -780.86 336.05 -749.13 338.83 -700.97 341.62 -639.14 344.4 -570.24 347.18 -500.24 349.96 -435.41 352.75 -377.2 355.53 -326.14 356.53 -305.79 358.53 -275.51 360.53 -248.38 362.53 -224.38 365.53 -192.56 368.53 -165.48 371.53 -142.4 372.53 -135.47 377.53 -105.75 382.53 -82.85 387.53 -65.196 392.53 -51.56 397.53 -41.05 402.53 -32.897 412.53 -21.705 422.53 -14.625 447.53 -6.12 472.53 -2.94
Area under the curve
[4/18/2012 01:47 "" (2456035)] integ1 Input iy = [Book1]6A!(A"S",B"B") type = 0 (math:Mathematical Area) plot = 0 Output oy = [Book1]6A!(,C"Integrated Y1") x1 = 0 x2 = 472.53 i1 = 1 i2 = 85 area = -90700.3274 y0 = -353.05 x0 = 272.06 dx = 245.38386115956
-15.25 A
Mapping at -15.25 Amp.
S B mm G Beam Magnetic Path Field 0 -5.996 5 -7.024 10 -8.265 15 -9.766 20 -11.596 25 -13.836 30 -16.596 35 -20.011 40 -24.25 45 -29.55 50 -35.96 55 -44.25 60 -54.67 65 -67.776 70 -84.225 75 -104.806 80 -130.495 85 -162.485 90 -202.426 92 -221.08 94 -241.527 96 -263.96 98 -288.57 100 -315.31 102 -344.89 104 -377.23 105.11 -395.22 107.9 -447.35 110.68 -505.17 113.46 -576.45 116.24 -629.02 119.02 -686.3 121.81 -733.05 124.59 -766.68 127.37 -788.63 132.94 -809.26 138.5 -815.77 144.07 -817.76 149.63 -818.35 155.2 -818.59 166.33 -818.79 177.46 -819.04 188.58 -819.25 199.71 -819.45 210.84 -819.59 221.97 -819.72 233.1 -819.86 244.23 -820 255.36 -820.16 266.49 -820.3 277.62 -820.4 288.75 -820.43 294.32 -820.4 305.44 -820.38 311.01 -820.24 316.57 -819.74 322.14 -817.73 324.92 -815.06 327.7 -809.82 330.49 -799.64 333.27 -780.86 336.05 -749.13 338.83 -700.97 341.62 -639.14 344.4 -570.24 347.18 -500.24 349.96 -435.41 352.75 -377.2 355.53 -326.14 356.53 -305.79 358.53 -275.51 360.53 -248.38 362.53 -224.38 365.53 -192.56 368.53 -165.48 371.53 -142.4 372.53 -135.47 377.53 -105.75 382.53 -82.85 387.53 -65.196 392.53 -51.56 397.53 -41.05 402.53 -32.897 412.53 -21.705 422.53 -14.625 447.53 -6.12 472.53 -2.94
Area under the curve
[4/18/2012 02:17 "" (2456035)] integ1 Input iy = [Book1]15A!(A"S",B"B") type = 0 (math:Mathematical Area) plot = 0 Output oy = [Book1]15A!(,C"Integrated Y1") x1 = 0 x2 = 472.53 i1 = 1 i2 = 87 area = -210413.9633 y0 = -820.43 x0 = 288.75 dx = 245.25506096565
24 A
Mapping at - 24 A Amp.
S B mm G Beam Magnetic Path Field 0 -9.243 5 -10.843 10 -12.773 15 -15.12 20 -17.98 25 -21.488 30 -25.808 35 -30.97 40 -37.575 45 -45.83 50 -56.175 55 -69.179 60 -85.536 65 -106.117 70 -131.394 75 -164.266 80 -204.61 85 -254.866 90 -317.34 92 -346.6 94 -378.67 96 -413.85 98 -452.39 100 -494.75 102 -541.15 104 -591.94 105.11 -615.64 107.9 -696.51 110.68 -787.1 113.46 -884.2 116.24 -979.92 119.02 -1069.3 121.81 -1142.4 124.59 -1195 127.37 -1229.2 130.15 -1249.7 132.94 -1261.3 138.5 -1271.5 144.07 -1274.7 149.63 -1275.7 155.2 -1276.2 166.33 -1276.7 177.46 -1277 188.58 -1277.5 199.71 -1277.9 210.84 -1278.2 221.97 -1278.4 233.1 -1278.7 244.23 -1279 255.36 -1279.2 266.49 -1279.44 277.62 -1279.56 288.75 -1279.52 294.32 -1279.46 299.88 -1279.4 305.44 -1279.26 311.01 -1279 316.57 -1278.17 322.14 -1275 324.92 -1270.8 327.7 -1262.6 330.49 -1246.67 333.27 -1217.4 336.05 -1167.8 338.83 -1092.5 341.62 -996.14 344.4 -888.66 347.18 -779.86 349.96 -679.2 352.75 -588.1 355.53 -508.2 356.53 -481.38 358.53 -433.77 360.53 -391.15 362.53 -353 365.53 -302.89 368.53 -260.44 371.53 -224.09 372.53 -213.18 377.53 -166.37 382.53 -130.298 387.53 -102.48 392.53 -81.009 397.53 -64.45 402.53 -51.6 412.53 -33.78 422.53 -22.83 447.53 -9.45 472.53 -4.46
Area under the curve
[4/18/2012 02:22 "" (2456035)] integ1 Input iy = [Book1]24A!(A"S",B"B") type = 0 (math:Mathematical Area) plot = 0 Output oy = [Book1]24A!(,C"Integrated Y1") x1 = 0 x2 = 472.53 i1 = 1 i2 = 89 area = -328194.84795 y0 = -1279.56 x0 = 277.62 dx = 245.22443902201
33 A
Mapping at - 33 Amp.
S B mm G Beam Magnetic Path Field 0 -11.425 5 -13.417 10 -15.828 15 -18.25 20 -22.315 25 -26.683 30 -31.873 35 -38.504 40 -46.74 45 -57.044 50 -69.95 55 -86.175 60 -106.593 65 -132.263 70 -164.517 75 -204.863 80 -255.216 85 -317.7 90 -395.93 92 -432.4 94 -472.48 96 -516.44 98 -564.64 100 -617.51 102 -675.33 104 -738.69 105.11 -767.57 107.9 -868.32 110.68 -980.56 113.46 -1101.2 116.24 -1220.8 119.02 -1331.6 121.81 -1422.5 124.59 -1487.8 127.37 -1530.3 130.15 -1558.4 132.94 -1570.3 138.5 -1582.9 144.07 -1586.9 149.63 -1588.2 155.2 -1588.74 166.33 -1589.3 177.46 -1589.8 188.58 -1590.37 199.71 -1590.73 210.84 -1591.05 221.97 -1591.4 233.1 -1591.8 244.23 -1592.07 255.36 -1592.3 266.49 -1592.4 277.62 -1592.7 288.75 -1592.7 294.32 -1592.6 299.88 -1592.46 305.44 -1592.3 311.01 -1592 316.57 -1590.9 322.14 -1586.97 324.92 -1581.7 327.7 -1571.5 330.49 -1551.8 333.27 -1515.25 336.05 -1453.6 338.83 -1360 341.62 -1239.46 344.4 -1105.5 347.18 -969.8 349.96 -844.62 352.75 -732.05 355.53 -632.51 356.53 -597.3 358.53 -538.2 360.53 -485.2 362.53 -437.7 365.53 -375.37 368.53 -322.4 371.53 -277.28 372.53 -263.9 377.53 -205.84 382.53 -161.1 387.53 -126.58 392.53 -99.94 397.53 -79.38 402.53 -63.56 412.53 -41.35 422.53 -27.64 447.53 -11.3 472.53 -5.193
Area under the curve
[4/18/2012 02:23 "" (2456035)] integ1 Input iy = [Book1]30A!(A"S",B"B") type = 0 (math:Mathematical Area) plot = 0 Output oy = [Book1]30A!(,C"Integrated Y1") x1 = 0 x2 = 472.53 i1 = 1 i2 = 89 area = -408481.827 y0 = -1592.7 x0 = 277.62 dx = 245.24936698806
Effective B-Field
Effective B-field = (Area Under the Curve) / (Beam path in dipole)
Scan Current | Area Under the Curve (G*mm) | Beam path in dipole (mm) | Effective B-field (G) | |
-6.50A | -90700.3274 | 250.149315 | -362.584752 | |
-15.25A | -210413.9633 | 250.149315 | -841.153466 | |
-24A | -328194.84795 | 250.149315 | -1 311.99579 | |
-33 A | -408481.827 | 250.149315 | -1 632.95201 |
Coil current vs Electron Beam Energy
Magnet (or momentum) rigidity:
p is momentum of the particle. q is the charge of the particle.
is the bending radius of the dipole. B is magnetic filed strength.For an electron
1 Gauss is
TeslaCoil Current (Amp) | dipole (m) | Effective B-field (T) | P [MeV/c] |
-6.50 | 0.3185 | -0.0362584752 | 3.46210054 |
-15.25 | 0.3185 | -0.0841153466 | 8.03166116 |
-24 | 0.3185 | -0.131199579 | 12.5274472 |
-33 | 0.3185 | -0.163295201 | 15.5920623 |
Coil Current (Amp) | P [MeV/c] | En using field map (MeV) | Corresponding En from table (MeV) |
-6.50 | 3.46210054 | 3.49960871 | 2.403 |
-15.25 | 8.03166116 | 8.04790047 | (6.129+6.350)/2 |
-24 | 12.5274472 | 12.5378648 | 10.095 |
-33 | 15.5920623 | 15.6004336 | 14.064 |
Coil En Current (Amp) (MeV) 6.50 3.49960871 15.25 8.04790047 24 12.5378648 33 15.6004336
Fitting for En vs I
matlab Poly fit method
S =
R: [3x3 double] df: 1 normr: 0.3244
table =
6.5000 3.4996 3.4261 0.0735 15.2500 8.0479 8.2673 -0.2194 24.0000 12.5379 12.3216 0.2163 33.0000 15.6004 15.6708 -0.0704
MATLAB Polyfit Fit for En vs I: En = 0.66503 + 0.66503I + -0.00514I^2
Matrix Inversion Method
Matrix Inversion Method Fit for En vs I: En = (-0.67944+-2.18159) + (0.66503+-0.25773)I + (-0.00514+-0.00639)I^2
average of two method
0.014 + (0.665+-0.258)I + (-0.00514+-0.00639)I^2
Estimation for En vs I
Current (A) Energy (MeV)
0.1 0.080 0.2 0.147 0.3 0.213 0.4 0.279 0.5 0.345 0.6 0.411 0.7 0.477 0.8 0.543 0.9 0.608 1 0.674 1.1 0.739 1.2 0.805 1.3 0.870 1.4 0.935 1.5 1.000 1.6 1.065 1.7 1.130 1.8 1.194 1.9 1.259 2 1.323 2.1 1.388 2.2 1.452 2.3 1.516 2.4 1.580 2.5 1.644 2.6 1.708 2.7 1.772 2.8 1.836 2.9 1.899 3 1.963 3.1 2.026 3.2 2.089 3.3 2.153 3.4 2.216 3.5 2.279 3.6 2.341 3.7 2.404 3.8 2.467 3.9 2.529 4 2.592 4.1 2.654 4.2 2.716 4.3 2.778 4.4 2.840 4.5 2.902 4.6 2.964 4.7 3.026 4.8 3.088 4.9 3.149 5 3.211 5.1 3.272 5.2 3.333 5.3 3.394 5.4 3.455 5.5 3.516 5.6 3.577 5.7 3.638 5.8 3.698 5.9 3.759 6 3.819 6.1 3.879 6.2 3.939 6.3 3.999 6.4 4.059 6.5 4.119 6.6 4.179 6.7 4.239 6.8 4.298 6.9 4.358 7 4.417 7.1 4.476 7.2 4.536 7.3 4.595 7.4 4.654 7.5 4.712 7.6 4.771 7.7 4.830 7.8 4.888 7.9 4.947 8 5.005 8.1 5.063 8.2 5.121 8.3 5.179 8.4 5.237 8.5 5.295 8.6 5.353 8.7 5.410 8.8 5.468 8.9 5.525 9 5.583 9.1 5.640 9.2 5.697 9.3 5.754 9.4 5.811 9.5 5.868 9.6 5.924 9.7 5.981 9.8 6.037 9.9 6.094 10 6.150 10.1 6.206 10.2 6.262 10.3 6.318 10.4 6.374 10.5 6.430 10.6 6.485 10.7 6.541 10.8 6.596 10.9 6.652 11 6.707 11.1 6.762 11.2 6.817 11.3 6.872 11.4 6.927 11.5 6.982 11.6 7.036 11.7 7.091 11.8 7.145 11.9 7.200 12 7.254 12.1 7.308 12.2 7.362 12.3 7.416 12.4 7.470 12.5 7.523 12.6 7.577 12.7 7.630 12.8 7.684 12.9 7.737 13 7.790 13.1 7.843 13.2 7.896 13.3 7.949 13.4 8.002 13.5 8.055 13.6 8.107 13.7 8.160 13.8 8.212 13.9 8.264 14 8.317 14.1 8.369 14.2 8.421 14.3 8.472 14.4 8.524 14.5 8.576 14.6 8.627 14.7 8.679 14.8 8.730 14.9 8.781 15 8.833 15.1 8.884 15.2 8.934 15.3 8.985 15.4 9.036 15.5 9.087 15.6 9.137 15.7 9.188 15.8 9.238 15.9 9.288 16 9.338 16.1 9.388 16.2 9.438 16.3 9.488 16.4 9.538 16.5 9.587 16.6 9.637 16.7 9.686 16.8 9.735 16.9 9.784 17 9.834 17.1 9.883 17.2 9.931 17.3 9.980 17.4 10.029 17.5 10.077 17.6 10.126 17.7 10.174 17.8 10.222 17.9 10.271 18 10.319 18.1 10.367 18.2 10.414 18.3 10.462 18.4 10.510 18.5 10.557 18.6 10.605 18.7 10.652 18.8 10.699 18.9 10.746 19 10.793 19.1 10.840 19.2 10.887 19.3 10.934 19.4 10.981 19.5 11.027 19.6 11.073 19.7 11.120 19.8 11.166 19.9 11.212 20 11.258 20.1 11.304 20.2 11.350 20.3 11.395 20.4 11.441 20.5 11.486 20.6 11.532 20.7 11.577 20.8 11.622 20.9 11.667 21 11.712 21.1 11.757 21.2 11.802 21.3 11.847 21.4 11.891 21.5 11.936 21.6 11.980 21.7 12.024 21.8 12.068 21.9 12.112 22 12.156 22.1 12.200 22.2 12.244 22.3 12.287 22.4 12.331 22.5 12.374 22.6 12.418 22.7 12.461 22.8 12.504 22.9 12.547 23 12.590 23.1 12.633 23.2 12.675 23.3 12.718 23.4 12.761 23.5 12.803 23.6 12.845 23.7 12.887 23.8 12.929 23.9 12.971 24 13.013 24.1 13.055 24.2 13.097 24.3 13.138 24.4 13.180 24.5 13.221 24.6 13.262 24.7 13.304 24.8 13.345 24.9 13.386 25 13.427 25.1 13.467 25.2 13.508 25.3 13.548 25.4 13.589 25.5 13.629 25.6 13.669 25.7 13.710 25.8 13.750 25.9 13.790 26 13.829 26.1 13.869 26.2 13.909 26.3 13.948 26.4 13.988 26.5 14.027 26.6 14.066 26.7 14.105 26.8 14.144 26.9 14.183 27 14.222 27.1 14.261 27.2 14.299 27.3 14.338 27.4 14.376 27.5 14.414 27.6 14.453 27.7 14.491 27.8 14.529 27.9 14.566 28 14.604 28.1 14.642 28.2 14.679 28.3 14.717 28.4 14.754 28.5 14.792 28.6 14.829 28.7 14.866 28.8 14.903 28.9 14.940 29 14.976 29.1 15.013 29.2 15.049 29.3 15.086 29.4 15.122 29.5 15.158 29.6 15.195 29.7 15.231 29.8 15.266 29.9 15.302 30 15.338 30.1 15.374 30.2 15.409 30.3 15.445 30.4 15.480 30.5 15.515 30.6 15.550 30.7 15.585 30.8 15.620 30.9 15.655 31 15.689 31.1 15.724 31.2 15.759 31.3 15.793 31.4 15.827 31.5 15.861 31.6 15.895 31.7 15.929 31.8 15.963 31.9 15.997 32 16.031 32.1 16.064 32.2 16.098 32.3 16.131 32.4 16.164 32.5 16.197 32.6 16.230 32.7 16.263 32.8 16.296 32.9 16.329 33 16.362 33.1 16.394 33.2 16.426 33.3 16.459 33.4 16.491 33.5 16.523 33.6 16.555 33.7 16.587 33.8 16.619 33.9 16.651 34 16.682 34.1 16.714 34.2 16.745 34.3 16.776 34.4 16.808 34.5 16.839 34.6 16.870 34.7 16.900 34.8 16.931 34.9 16.962 35 16.993 35.1 17.023 35.2 17.053 35.3 17.084 35.4 17.114 35.5 17.144 35.6 17.174 35.7 17.204 35.8 17.233 35.9 17.263 36 17.293 36.1 17.322 36.2 17.351 36.3 17.381 36.4 17.410 36.5 17.439 36.6 17.468 36.7 17.496 36.8 17.525 36.9 17.554 37 17.582 37.1 17.611 37.2 17.639 37.3 17.667 37.4 17.695 37.5 17.723 37.6 17.751 37.7 17.779 37.8 17.807 37.9 17.834 38 17.862 38.1 17.889 38.2 17.917 38.3 17.944 38.4 17.971 38.5 17.998 38.6 18.025 38.7 18.051 38.8 18.078 38.9 18.105 39 18.131 39.1 18.157 39.2 18.184 39.3 18.210 39.4 18.236 39.5 18.262 39.6 18.288 39.7 18.313 39.8 18.339 39.9 18.365 40 18.390 40.1 18.415 40.2 18.441 40.3 18.466 40.4 18.491 40.5 18.516 40.6 18.540 40.7 18.565 40.8 18.590 40.9 18.614 41 18.639 41.1 18.663 41.2 18.687 41.3 18.711 41.4 18.735 41.5 18.759 41.6 18.783 41.7 18.807 41.8 18.830 41.9 18.854 42 18.877 42.1 18.900 42.2 18.923 42.3 18.947 42.4 18.970 42.5 18.992 42.6 19.015 42.7 19.038 42.8 19.060 42.9 19.083 43 19.105 43.1 19.127 43.2 19.150 43.3 19.172 43.4 19.194 43.5 19.215 43.6 19.237 43.7 19.259 43.8 19.280 43.9 19.302 44 19.323 44.1 19.344 44.2 19.365 44.3 19.386 44.4 19.407 44.5 19.428 44.6 19.449 44.7 19.469 44.8 19.490 44.9 19.510 45 19.531 45.1 19.551 45.2 19.571 45.3 19.591 45.4 19.611 45.5 19.630 45.6 19.650 45.7 19.670 45.8 19.689 45.9 19.708 46 19.728 46.1 19.747 46.2 19.766 46.3 19.785 46.4 19.804 46.5 19.823 46.6 19.841 46.7 19.860 46.8 19.878 46.9 19.897 47 19.915 47.1 19.933 47.2 19.951 47.3 19.969 47.4 19.987 47.5 20.004 47.6 20.022 47.7 20.040 47.8 20.057 47.9 20.074 48 20.091 48.1 20.109 48.2 20.126 48.3 20.142 48.4 20.159 48.5 20.176 48.6 20.193 48.7 20.209 48.8 20.225 48.9 20.242 49 20.258 49.1 20.274 49.2 20.290 49.3 20.306 49.4 20.322 49.5 20.337 49.6 20.353 49.7 20.368 49.8 20.384 49.9 20.399 50 20.414 50.1 20.429 50.2 20.444 50.3 20.459 50.4 20.474 50.5 20.488 50.6 20.503 50.7 20.517 50.8 20.532 50.9 20.546 51 20.560 51.1 20.574 51.2 20.588 51.3 20.602 51.4 20.615 51.5 20.629 51.6 20.642 51.7 20.656 51.8 20.669 51.9 20.682 52 20.695 52.1 20.708 52.2 20.721 52.3 20.734 52.4 20.747 52.5 20.759 52.6 20.772 52.7 20.784 52.8 20.797 52.9 20.809 53 20.821 53.1 20.833 53.2 20.845 53.3 20.856 53.4 20.868 53.5 20.880 53.6 20.891 53.7 20.902 53.8 20.914 53.9 20.925 54 20.936 54.1 20.947 54.2 20.958 54.3 20.968 54.4 20.979 54.5 20.989 54.6 21.000 54.7 21.010 54.8 21.020 54.9 21.030 55 21.041 55.1 21.050 55.2 21.060 55.3 21.070 55.4 21.080 55.5 21.089 55.6 21.098 55.7 21.108 55.8 21.117 55.9 21.126 56 21.135 56.1 21.144 56.2 21.153 56.3 21.161 56.4 21.170 56.5 21.178 56.6 21.187 56.7 21.195 56.8 21.203 56.9 21.211 57 21.219 57.1 21.227 57.2 21.235 57.3 21.242 57.4 21.250 57.5 21.257 57.6 21.265 57.7 21.272 57.8 21.279 57.9 21.286 58 21.293 58.1 21.300 58.2 21.307 58.3 21.313 58.4 21.320 58.5 21.326 58.6 21.332 58.7 21.339 58.8 21.345 58.9 21.351 59 21.357 59.1 21.362 59.2 21.368 59.3 21.374 59.4 21.379 59.5 21.385 59.6 21.390 59.7 21.395 59.8 21.400 59.9 21.405 60 21.410 60.1 21.415 60.2 21.419 60.3 21.424 60.4 21.428 60.5 21.433 60.6 21.437 60.7 21.441 60.8 21.445 60.9 21.449 61 21.453 61.1 21.457 61.2 21.460 61.3 21.464 61.4 21.467 61.5 21.471 61.6 21.474 61.7 21.477 61.8 21.480 61.9 21.483 62 21.486 62.1 21.489 62.2 21.491 62.3 21.494 62.4 21.496 62.5 21.498 62.6 21.501 62.7 21.503