Difference between revisions of "Runs 4111(D2O)/4112(H2O)"
Line 75: | Line 75: | ||
It can be concluded that the neutron energy uncertainty is really sensitive to the neutron ToF uncertainty. In our case we had a long tail in photon peak which could possibly distort the zero time definition and the precision of neutron energy calculation. | It can be concluded that the neutron energy uncertainty is really sensitive to the neutron ToF uncertainty. In our case we had a long tail in photon peak which could possibly distort the zero time definition and the precision of neutron energy calculation. | ||
+ | |||
+ | == Simulation of n-flight path. DetH. == | ||
+ | |||
+ | Simulated neutron flight pass lenrgth distribution is presented below: | ||
+ | |||
+ | [[File:Fit_whole_range_detH.png | 600 px]] |
Revision as of 23:17, 11 September 2012
Subtraction of stops for D2O
Subtraction of the stops for each detector in the case of D2O target. The length of the active area (scintillator) of the detector is 75.3 cm.
Subtraction of stops for H2O
Subtraction of the stops for each detector in the case of H2O target:
Subtraction of D2O and H2O ToF
Normalized superimposed timing spectra from D2O(black line)/H2O(red line) targets and bin-by-bin subtraction (green line) of D2O-H2O data:
Neutron energy analysis
Neutron energy distribution data analysis for run 4111:
Errors on the neutron energy for the case of Det M:
Where uncertainty in the neutron flight pass due to the finite width of the detector (14.8 cm)
and uncertainty in zero time definition in neutron TOF spectrumCorrelation between the neutron energy and neutron energy uncertainty is plotted below:
The above plot may look better if you plot-vs- ( ) As the energy increased the uncertainty increases to the point the the error bar is as big as the magnitude of the energy.
Simulation of n-flight path. DetM.
Simulation of the flight path length uncertainty
for Det M(1,2) placed right below the target:Cylindrical target with dimensions of real target was used. It was filled with liquid D2. 1 MeV neutrons were generated inside the target uniformly and isotropically. The shortest distance from the target to the detector surface was 97.4 cm (corresponds to zero in the plot of the Delta_L)
The whole range fit:
Central region fit:
As can be seen we have
of ~ 3.3 cm for the whole detector (no binning).Experimental data Det M
The correlation of neutron energy
and its uncertainty for the case neutron ToF cut [20,65] ns:If we consider the neutron time of flight uncertainty
and then the correlation plot changes toIf we consider the neutron time of flight uncertainty
and then the correlation plot changes toIt can be concluded that the neutron energy uncertainty is really sensitive to the neutron ToF uncertainty. In our case we had a long tail in photon peak which could possibly distort the zero time definition and the precision of neutron energy calculation.
Simulation of n-flight path. DetH.
Simulated neutron flight pass lenrgth distribution is presented below: