Difference between revisions of "IPAC 2012"
Line 204: | Line 204: | ||
\section{Conclusions} | \section{Conclusions} | ||
− | A diagnostic tool was developed and used to measure the beam emittance of the High Rep Rate Linac at the Idaho Accelerator Center. The tool relied on measuring the images generated by the optical transition radiation of the electron beam on a polished thin aluminum target. The electron beam profile was not described well using a single Gaussian distribution but rather by a super Gaussian or Lorentzian distribution. The system appears to more accurately measure the beam's horizontal size because of the larger dynamic range of the imaging system's pixels. The | + | A diagnostic tool was developed and used to measure the beam emittance of the High Rep Rate Linac at the Idaho Accelerator Center. The tool relied on measuring the images generated by the optical transition radiation of the electron beam on a polished thin aluminum target. The electron beam profile was not described well using a single Gaussian distribution but rather by a super Gaussian or Lorentzian distribution. The system appears to more accurately measure the beam's horizontal size because of the larger dynamic range of the imaging system's pixels. The projected emittance of the High Rep Rate Linac, similar to medical linacs, at ISU was measured to be less than 0.4~$\mu$m as measured by the OTR based tool described above when accelerating electrons to an energy of 15~MeV. We plan to perform similar measurements over the energy range of the linac in the near future. |
\section{ACKNOWLEDGMENT} | \section{ACKNOWLEDGMENT} |
Revision as of 22:21, 16 May 2012
latex file: File:IPAC 2012 Sadiq.txt
Latex
\documentclass[acus]{JAC2003}
%% %% This file was updated in March 2011 by T. Satogata to be in line with Word templates. %% %% Use \documentclass[boxit]{JAC2003} %% to draw a frame with the correct margins on the output. %% %% Use \documentclass{JAC2003} %% for A4 paper layout %%
\usepackage{graphicx} \usepackage{booktabs} \usepackage{epstopdf} \usepackage{subfig} \usepackage{graphicx} \usepackage{amstext} \usepackage{hyperref} %\usepackage{caption} %\usepackage{subcaption}
%\usepackage{epsfig} %% %% VARIABLE HEIGHT FOR THE TITLE BOX (default 35mm) %%
\setlength{\titleblockheight}{40mm}
\begin{document} \title{TRANSVERSE BEAM EMITTANCE MEASUREMENTS OF\\A 16 MeV LINAC AT THE IDAHO ACCELERATOR CENTER} %\title{TRANSVERSE BEAM EMITTANCE MEASUREMENTS OF A 16 MeV LINAC AT THE IAC\thanks{ Work supported by ...}}
\author{S. Setiniyaz\thanks{Email: sadik82@gmail.com}, K. Chouffani, T. Forest, and Y. Kim\\ Idaho State University, Pocatello, ID, 83209, USA\\ A. Freyberger, Jefferson Lab, Newport News, Virginia, 23606, USA}
\maketitle
\begin{abstract} A beam emittance measurement of a 16~MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1~kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the results of measured transverse emittances for an arbitrary beam energy. \end{abstract}
A beam emittance measurement of a 16~MeV S-band High Repetition Rate Linac (HRRL) was performed at Idaho State University's Idaho Accelerator Center (IAC). The HRRL linac structure was upgraded beyond the capabilities of a typical medical linac so it can achieve a repetition rate of 1~kHz. Measurements of the HRRL transverse beam emittance are underway that will be used to optimize the production of positrons using HRRL's intense electron beam on a tungsten converter. In this paper, we describe a beam imaging system using on an OTR screen and a digital CCD camera, a MATLAB tool to extract beamsize and emittance, detailed measurement procedures, and the results of measured transverse emittances for an arbitrary beam energy.
\end{abstract}
\section{Introduction}
The HRRL is an S-band electron linac located in the beam lab of the Physics Department at Idaho State University (ISU). The HRRL accelerates electrons to energies between 3 and 16~MeV with a maximum repetition rate of 1~kHz. The HRRL beamline has recently been reconfigured to generate positrons to be as a secondary beam. %The electron beam characteristics of the HRRL are summarized in Table~???.
An Optical Transition Radiation (OTR) based viewer was installed to allow measurements at the high electron currents available using the HRRL. The visible light from the OTR based viewer is produced when a relativistic electron beam crosses the boundary of two mediums with different dielectric constants. Visible radiation is emitted at an angle of 90${^\circ}$ with respect to the incident beam direction~\cite{OTR} when the electron beam intersects the OTR target at a 45${^\circ}$ angle. These backward-emitted photons are observed using a digital camera and can be used to measure the shape and intensity of the electron beam based on the OTR image distribution.
Emittance is a key parameter in accelerator physics that is used to quantify the quality of an electron beam produced by an accelerator. An emittance measurement can be performed in a several ways~\cite{emit-ways, sole-scan-Kim}. This work used the Quadrupole scanning method~\cite{quad-scan} to the measure emittance, Twiss parameters, and the beam energy. %\begin{table}[hbt] % \centering % \caption{Operational Parameters of HRRL Linac.} % \begin{tabular}{lccc} % \toprule % Parameter & Unit & Value \\ % \midrule % maximum electron beam energy $E$ & MeV & 16 \\ % \midrule % electron beam peak current $I_{\textnormal{peak}}$ & mA & 80 \\ % \midrule % macro-pulse repetition rate & Hz & 1000 \\ % \midrule % macro-pulse pulse length (FWHM) & ns & 250 \\ % \midrule % rms energy spread & \% & 4.23 \\ % \bottomrule %\end{tabular} %\label{tab:hrrl} %\end{table}
\includegraphics[scale=0.40]{quad_scan_setup.eps}
\caption{Apparatus used to measure the beam emittance.} \label{q-scan-layout} \end{figure} Assuming the thin lens approximation, $\sqrt{k_1}L << 1$, is satisfied, the transfer matrix of a quadrupole magnet may be expressed as % thin lens approximation (sqrt{k1}*L << 1). In our case sqrt{k1}*L =0.07 Q=(10−k1L1)=(10−1f1),
The emittance measurement was performed using an electron beam energy of 15~MeV and a 40~mA macro pulse peak current. The current in the first quadrupole after the exit of the linac was changed from $-$~5~A to 5~A with an increment of 0.2~A. Seven measurements were taken at each current step in order to determine the average beam width and the variance. Background measurements were taken by turning the linac's electron gun off while keep the RF on. Background image and beam images before and after background subtraction are shown in Fig.~???. A small dark current is visible in Fig.~???b that is known to be generated when electrons are pulled off the cavity wall and accelerated.
\begin{figure} \begin{tabular}{ccc} \centerline{\scalebox{0.28} [0.22]{\includegraphics{sg_no_bg_subtraction_0Amp.eps}}} \\ (a)\\ \centerline{\scalebox{0.28} [0.22]{\includegraphics{Background.eps}}}\\ (b)\\ \centerline{\scalebox{0.28} [0.22]{\includegraphics{bg_subtracted_0Amp.eps}}}\\ (c) \end{tabular} \caption{Background subtracted to minimize impact of dark current; (a) a beam with the dark current and background noise, (b) a background image, (c) a beam image when dark background was subtracted.} \label{bg} \end{figure}
Fig.~??? shows the square of the rms ($\sigma^2_\textnormal{s}$) $vs$ $k_1L$ for $x$ (horizontal) and $y$ (vertical) beam projections along with the parabolic fits using Eq.~??? . The emittances and Twiss parameters from these fits are summarized in Table.~???. Further details of the fitting procedures are described in reference~\cite{emit-mat}. The normalized emittance is obtained by multiplying the projected emittance by the average relativistic factor $\gamma$ and $\beta$ of the electron beam. \begin{figure} \begin{tabular}{cc} {\scalebox{0.21} [0.20]{\includegraphics{par_fit_x.eps}}} {\scalebox{0.21} [0.20]{\includegraphics{par_fit_y.eps}}} \end{tabular} \caption{Square of rms values and parabolic fittings.} \label{par-fit} \end{figure}
\centering \caption{Emittance Measurement Results.} \begin{tabular}{lcc} \toprule {Parameter} & {Unit} & {Value} \\ \midrule projected emittance $\epsilon_x$ & $\mu$m & $0.37 \pm 0.02$ \\ projected emittance $\epsilon_y$ & $\mu$m & $0.30 \pm 0.04$ \\
normalized emittance $\epsilon_{n,x}$ & $\mu$m & $10.10 \pm 0.51$ \\ normalized emittance $\epsilon_{n,y}$ & $\mu$m & $8.06 \pm 1.1$ \\
$\beta_x$-function & m & $1.40 \pm 0.06$ \\ $\beta_y$-function & m & $1.17 \pm 0.13$ \\
$\alpha_x$-function & rad & $0.97 \pm 0.06$ \\ $\alpha_y$-function & rad & $0.24 \pm 0.07$ \\ micro-pulse charge & pC & 11 \\ micro-pulse length & ps & 350.16 \\ energy of the beam $E$ & MeV & 15 $\pm$ 1.5 \\ relative energy spread $\Delta E/E$ & \% & 10.4 \\
\bottomrule \end{tabular} \label{results}
\end{table}
\section{Conclusions} A diagnostic tool was developed and used to measure the beam emittance of the High Rep Rate Linac at the Idaho Accelerator Center. The tool relied on measuring the images generated by the optical transition radiation of the electron beam on a polished thin aluminum target. The electron beam profile was not described well using a single Gaussian distribution but rather by a super Gaussian or Lorentzian distribution. The system appears to more accurately measure the beam's horizontal size because of the larger dynamic range of the imaging system's pixels. The projected emittance of the High Rep Rate Linac, similar to medical linacs, at ISU was measured to be less than 0.4~$\mu$m as measured by the OTR based tool described above when accelerating electrons to an energy of 15~MeV. We plan to perform similar measurements over the energy range of the linac in the near future.
\section{ACKNOWLEDGMENT} We would like to acknowledge the outstanding efforts of Idaho Accelerator Center. This work was supported by DOE award \# DE-SC0002600. %Thanks to C. F. Eckman, C. O'Neill, and Dr. D. Wells. \begin{thebibliography}{9} % Use for 1-9 references
%000000000000000000000000000000000000000000000000000000000000 %@article{Murokh_Rosenzweig_Yakimenko_Johnson_Wang_2000, title={Limitations on the Resolution of Yag:Ce Beam Profile Monitor for High Brightness Electron Beam}, url={http://eproceedings.worldscinet.com/9789812792181/9789812792181_0038.html}, journal={The Physics of High Brightness Beams Proceedings of the 2nd ICFA Advanced Accelerator Workshop}, publisher={World Scientific Publishing Co. Pte. Ltd.}, author={Murokh, A and Rosenzweig, J and Yakimenko, V and Johnson, E and Wang, X J}, year={2000}, pages={564--580}}
%\bibitem{otr-yag} %A. Murokh $et$ $al$., {\it The Physics of High Brightness Beams}, (Singapore: World Scientific, 2000), 564. %000000000000000000000000000000000000000000000000000000000000
%000000000000000000000000000000000000000000000000000000000000
%@article{OTR, %title = "Analysis of optical transition radiation emitted by a 1 MeV electron beam and its possible use as diagnostic tool", %journal = "Nuclear Instruments and Methods in Physics Research Section A: Accelerators, Spectrometers, Detectors and Associated Equipment", %volume = "357", %number = "2–3", %pages = "231 - 237", %year = "1995", %author = "M. Castellano and M. Ferrario and S. Kulinski and M. Minestrini and P. Patteri and F. Tazzioli and L. Catani and L. Gregorini and S. Tazzari" %note = "", %issn = "0168-9002", %doi = "10.1016/0168-9002(94)01533-3", %url = "http://www.sciencedirect.com/science/article/pii/0168900294015333", %} %\bibitem{OTR2} %M. Castellano, $et$ $al$., Nucl. %Instr. and Meth. A \textbf{357}, (1995) 231.
%000000000000000000000000000000000000000000000000000000000000
%@techreport{OTR, % title =Template:Optical Transition Radiation, % month ={}, % year = {1992}, % author ={B. Gitter}, % address ={Los Angeles, CA 90024}, % institution ={Particle Beam Physics Lab, Center for Advanced Accelerators, UCLA Department of Physics} %} \bibitem{OTR} B. Gitter, Tech. Rep., Los Angeles, USA (1992).
%000000000000000000000000000000000000000000000000000000000000 %@article{emit-ways, %title={Methods of Emittance Measurement}, %volume={08544}, % journal={Frontiers of Particle Beams Observation Diagnosis and Correction}, % publisher={Springer-Verlag}, % author={Mcdonald, K T and Russell, D P}, % editor={Month, M and Turner, SEditors}, %year={1988}, %pages={1--12}, %url={http://www.springerlink.com/index/M04123462V02P745.pdf} %} %http://www.mendeley.com/research/methods-emittance-measurement-13/
\bibitem{emit-ways} K.T. McDonald and D.P. Russell, Fron. of Par. Beams Obser. Diag. and Cor. \textbf{08544}, (1988).
%000000000000000000000000000000000000000000000000000000000000 \bibitem{sole-scan-Kim} Y. Kim $et$ $al$., in $Proc$. $FEL2008$, Gyeongju, Korea. %000000000000000000000000000000000000000000000000000000000000
%@techreport{quad-scan, % title =Template:Emittance Measurement of The DAFNE Linac Electron Beam, % month ={Nov.}, % year = {2005}, % author ={G. Benedetti, B. Buonomo, D. Filippetto}, % address ={Frascati, Italy}, % number ={}, % institution ={DAFNE Technical Note} %} \bibitem{quad-scan} D.F.G. Benedetti, $et$ $al$., Tech. Rep., DAFNE Tech. Not., Frascati, Italy (2005).
%000000000000000000000000000000000000000000000000000000000000 %\bibitem{exampl-ref2} %S.Y. Lee, Accelerator Physics (World_Scientific Pub. Singapore, 2004), 61 %
\bibitem{SYLee} S.Y. Lee, {\it Accelerator Physics}, (Singapore: World Scientific, 2004), 61.
%000000000000000000000000000000000000000000000000000000000000 %@techreport{EVH:Office, % author ={Eric van Herwijnen}, % title ={{Future Office Systems % Requirements}}, % institution ={CERN DD Internal Note}, % year =1988, month = nov } %
%@ARTICLE{sup-Gau, % author = {{Decker}, F.~J.}, % title = "{Beam distributions beyond RMS}", % journal = {NASA STI/Recon Technical Report N}, % keywords = {BEAMFORMING, BEAMS (RADIATION), KURTOSIS, LUMINOSITY, MEAN SQUARE VALUES, ABERRATION, DISPERSING, NORMAL DENSITY FUNCTIONS}, % year = {1994}, % month = {Sep}, % volume = {1996}, % pages = {10487}, % adsurl = {http://adsabs.harvard.edu/abs/1994STIN...9610487D}, % adsnote = {Provided by the SAO/NASA Astrophysics Data System} %} \bibitem{sup-Gau} F.J. Decker, NASA STI/Recon Tech. Rep. N \textbf{1996}, (1994) 10487.
%000000000000000000000000000000000000000000000000000000000000
%000000000000000000000000000000000000000000000000000000000000 \bibitem{emit-mat} C.F. Eckman $et$ $al$., in $Proc$. $IPAC2012$, New Orleans, USA. %000000000000000000000000000000000000000000000000000000000000
\end{thebibliography}
\end{document}