Difference between revisions of "Lab 17 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 43: Line 43:
 
| Forward Transfer Admittance  || <math>y_{fs}</math> || 2000 || 7500 || <math>\mu</math>mhos
 
| Forward Transfer Admittance  || <math>y_{fs}</math> || 2000 || 7500 || <math>\mu</math>mhos
 
|-
 
|-
|  
+
| Input Admittance || <math>y_{is}</math> || - || 800 || <math>\mu</math>mhos
| <math>y_{is}</math>
 
| colspan="2" |  
 
|  
 
 
|-
 
|-
|  
+
| Output Conductance || <math>y_{os}</math> || - || 200 || <math>\mu</math>mhos
| <math>y_{os}</math>
 
| colspan="2" |  
 
|  
 
 
|}
 
|}
  

Revision as of 23:18, 10 April 2011

Go Back to All Lab Reports


The JFET (Junction Field Effect Transistor n-channel)


File:JFET MPF102 DataSheet.pdf

JFET MPF102 Pinouts.png


1). Complete the table below for the JFET.

Characteristic Symbol Min Max Unit
Zero-Gate-Voltage Drain Current [math] I_{DSS}[/math] 2.0 20 mAdc
Gate-Source Cutoff Voltage [math]V_{GS(off)}[/math] - -8.0 Vdc
Total Device Dissipation @ [math]T_A=25^oC[/math] [math]P_{max}[/math] 350 mW
Gait resistor 3.3 M[math]\Omega[/math]
Drain resistor [math]R_D[/math] 1.0 k[math]\Omega[/math]
Forward Transfer Admittance [math]y_{fs}[/math] 2000 7500 [math]\mu[/math]mhos
Input Admittance [math]y_{is}[/math] - 800 [math]\mu[/math]mhos
Output Conductance [math]y_{os}[/math] - 200 [math]\mu[/math]mhos

2.) Construct the JFET circuit below.

TF EIM Lab17Circuit.png

3.) Plot measurements of [math]I_D[/math] -vs- [math]V_{DS}[/math] by varying [math]V_{dd}[/math] for [math]\left | V_{GS}\right |[/math] = 0, 0.5, 1.0, 1.5 V. (40 pnts)

I have used the following resistors:

[math]R_G = (3.34 \pm 0.02)\ M\Omega[/math]
[math]R_D = (0.968 \pm 0.002)\ k\Omega[/math]

Below is the table with my measurements of voltages [math]V_{DS}[/math] and [math]V_{R_D}[/math] and calculation of the current [math]I_D[/math]. Here I have used the meter to measure directly the voltage drop between the drain and source [math]V_{DS}[/math] and to measure the voltage drop on resistor [math]R_D[/math].

So my calculated current becomes:

[math]I_D = \frac{V_{R_D}}{R_D}[/math].


Table01.png

Table02.png

Table03.png

Table04.png


And below I have plotted four curves [math]I_D[/math] as function of [math]V_{DS}[/math] for four different values of [math]V_{GS}[/math]


L17 id vs vgs.png


4.) Plot [math] I_D[/math] -vs- [math]V_{GS}[/math] (30 pnts)

For every measured [math]V_{GS}[/math] values I have picked up the current [math]I_D[/math] values in the middle of saturation region of each line as follow:


Table21.png


And below is my plot of [math] I_D[/math] -vs- [math]V_{GS}[/math]:


L17 id vs vgs 21.png


5.) Calculate [math]y_{fs}[/math] for your JFET (20 pnts)

For common source configuration JFET:

[math]y_{fs} \equiv  \left ( \frac{\partial I_{out}}{\partial V_{in}} \right )_{V_{out}} = \left ( \frac{\partial I_D}{\partial V_{GS}} \right )_{V_{DS}}[/math]

So to calculate [math]y_{fs}[/math] we need to know the functional dependence of [math]I_D(V_{GS})[/math]. Lets approximate this function by line using my measurements and plot above:

L17 id vs vgs 22.png

The line equation is:

[math]I_D[mA] = (10.53 \pm 0.04)[mA] + (4.04 \pm 0.04)\cdot V_{GS}[V][/math]

Also note that this line equation was obtained using about the same voltage [math]V_{DS}[/math] in saturation region from my first measurements of [math]I_D[/math] as function of [math]V_{DS}[/math] for four different values of [math]V_{GS}[/math]. So we can take the partial derivative of [math]I_D[/math] with respect to [math]V_{GS}[/math] using the line equation above. Finally,

[math]y_{fs} \equiv  \left ( \frac{\partial I_D}{\partial V_{GS}} \right )_{V_{DS}} = (4.04 \pm 0.04)\ \frac{mA}{V} =  (4.04 \pm 0.04)\ mS[/math]

Question

Does [math]y_{fs}[/math] depend on [math]I_D[/math]? (10 pnts)

No. As we can see from calculation above [math]y_{fs}[/math] is constant and does not depend from [math]I_D[/math]. That is true if we are working in saturation region where the functional dependence of [math]I_D[/math] with respect to [math]V_{GS}[/math] is line so

[math]y_{fs} \equiv \left ( \frac{\partial I_D}{\partial V_{GS}} \right )_{V_{DS}} = const[/math]

If we are in active region of [math]I_D[/math] as function of [math]V_{DS}[/math] the functional form of [math]I_D[/math] with respect to [math]V_{GS}[/math] is not the line anymore and [math]y_{fs}[/math] will depend on [math]I_D[/math].




Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement