Difference between revisions of "Lab 13 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 78: Line 78:
  
 
I used:
 
I used:
  <math>R_1 = (197.7 \pm 0.5)\ k\Omega </math>
+
  <math>R_1 = (199.5 \pm 0.5)\ k\Omega </math>
  <math>R_1 = (197.5 \pm 0.5)\ k\Omega </math>
+
  <math>R_1 = (198.7 \pm 0.5)\ k\Omega </math>
  <math>R_1 = (99.5 \pm 0.5)\ k\Omega </math>
+
  <math>R_1 = (100.0 \pm 0.5)\ k\Omega </math>
  <math>R_B = (R_1 + R_2 + R_3) = (494.7 \pm 3.1)\ k\Omega </math>
+
  <math>R_B = (R_1 + R_2 + R_3) = (498.2 \pm 3.1)\ k\Omega </math>
 
and
 
and
 
  <math>R_E = (100.0 \pm 0.5)\ Omega </math>
 
  <math>R_E = (100.0 \pm 0.5)\ Omega </math>

Revision as of 17:16, 11 March 2011

Go Back to All Lab Reports


DC Bipolar Transistor Curves

Data sheet for transistors.

Media:2N3904.pdfMedia:2N3906.pdf

2N3904 PinOuts.png2N3906 PinOuts.png


Using 2N3904 is more srtaight forward in this lab.

Transistor circuit

1.) Identify the type (n-p-n or p-n-p) of transistor you are using and fill in the following specifications.


I am going to use n-p-n transistor 2N3904. Below are some specifications from data shits for this type of transistor:

Value Description
V(BR)CEO=40 V Collector-Base breakdown voltage
V(BR)EBO=6 V Emitter-Base Breakdown Voltage
V(BR)CEO=40 V Maximum Collector-Emitter Voltage
V(BR)CBO=60 V Maximum Collector-Emitter Voltage
IC=200 mA Maximum Collector Current - Continuous
P=625 mW Transistor Power rating(PMax)
hFE min  hFE max  IC, VCE
40 300 IC=0.1 mA, VCE=1.0 V
70 300 IC=1 mA, VCE=1.0 V
100 300 IC=10 mA, VCE=1.0 V
60 300 IC=50 mA, VCE=1.0 V
30 300 IC=100 mA, VCE=1.0 V


2.) Construct the circuit below according to the type of transistor you have.

TF EIM Lab13a Circuit.pngTF EIM Lab13 Circuit.png


Let RE=100Ω.

VCC<5Volts variable power supply

VBE=1 V.

Find the resistors you need to have

IB=2μA , 5μA , and 10μA

By measurements I was able to find that VBE=0.6 V. So I am going to use this value. Also let picks up VBB=1.6 V. So my current IB=VBBVBERB=(1.60.6) VRB=1.0 VRB.

Now to get [math]I_B = 2\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{2\ \mu A} = 500\ k\Omega[/math]
    To get [math]I_B = 5\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{5\ \mu A} = 200\ k\Omega[/math]
    To get [math]I_B = 10\ \mu A[/math] I need to use [math]R_B = \frac{1.0\ V}{10\ \mu A} = 100\ k\Omega[/math]



3.) Measure the emitter current IE for several values of VCE by changing VCC such that the base current IB=2μ A is constant. IBVBBVBERB


I used:

[math]R_1 = (199.5 \pm 0.5)\ k\Omega [/math]
[math]R_1 = (198.7 \pm 0.5)\ k\Omega [/math]
[math]R_1 = (100.0 \pm 0.5)\ k\Omega [/math]
[math]R_B = (R_1 + R_2 + R_3) = (498.2 \pm 3.1)\ k\Omega [/math]

and

[math]R_E = (100.0 \pm 0.5)\ Omega [/math]


Below is the table with my measurements:

Table 2uA 01.png


And below is my currents and power calculation:

Here:

[math]I_{E} = \frac{V_E}{R_E}[/math]
[math]I_{B} = \frac{V_{BB}-V_B}{R_B}[/math]
[math]P_{max} = I_C \cdot V_{EC} = (I_E - I_B) \cdot V_{EC} [/math] 

Table 2uA 02.png


4a.) Repeat the previous measurements for IB5 μA. Remember to keep ICVCE<Pmax so the transistor doesn't burn out


I used:

[math]R_1 = (199.5 \pm 0.5)\ k\Omega [/math]

and

[math]R_E = (100.0 \pm 0.5)\ Omega [/math]


Below is the table with my measurements:

Table 5uA 011.png


And below is my currents and power calculation:

Here:

[math]I_{E} = \frac{V_E}{R_E}[/math]
[math]I_{B} = \frac{V_{BB}-V_B}{R_B}[/math]
[math]P_{max} = I_C \cdot V_{EC} = (I_E - I_B) \cdot V_{EC} [/math] 

Table 5uA 021.png


4a.) Repeat the previous measurements for IB 10μA. Remember to keep ICVCE<Pmax so the transistor doesn't burn out



5.) Graph IC -vs- VCE for each value of IB and VCC above. (40 pnts)

Bellow is my plot for the case of IB=2μA

L13 2uA 01.png


Bellow is my plot for the case of IB=5μA

L13 5uA 011.png


Bellow is my plot for the case of IB=10μA



6.) Overlay points from the transistor's data sheet on the graph in part 5.).(10 pnts)


Questions

  1. Compare your measured value of hFE or β for the transistor to the spec sheet? (10 pnts)
  2. What is α for the transistor?(10 pnts)
  3. The base must always be more _________(________) than the emitter for a npn (pnp)transistor to conduct I_C.(10 pnts)
  4. For a transistor to conduct I_C the base-emitter junction must be ___________ biased.(10 pnts)
  5. For a transistor to conduct I_C the collector-base junction must be ___________ biased.(10 pnts)

Extra credit

Measure the Base-Emmiter breakdown voltage. (10 pnts)


I expect to see a graph (IBvsVBE) and a linear fit which is similar to the forward biased diode curves. Compare your result to what is reported in the data sheet.



Go Back to All Lab Reports Forest_Electronic_Instrumentation_and_Measurement