Difference between revisions of "TF EIM Chapt3"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
=== gain===
 
Loop Theorem
 
 
:<math>\Rightarrow V= I(R+X_{tot}) = I \left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )</math>
 
 
or
 
 
:<math> I= \frac{V_0 e^{i \omega t}}{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )}</math>
 
 
;Notice
 
:When <math>\omega \approx \omega_{LC} = \sqrt{\frac{1}{LC}}</math> then the AC signal is attenuated.
 
 
Looking at the Voltage divider aspect of the circuit
 
 
:<math>V_{AB}=V_{out} = \frac{X_{tot} }{R + X_{tot}}V_{in}</math>
 
 
:<math>\left |\frac{ V_{out}} {V_{in}}\right | = \sqrt{ \left [ \frac{X_{tot} }{R + X_{tot}} \right ]  \left [ \frac{X_{tot} }{R + X_{tot}} \right ]^*}</math>
 
 
::<math> = \sqrt{ \left [ \frac{\frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} }{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )} \right ]  \left [ \frac{\frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} }{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )} \right ]^*}</math>
 
::<math> = \sqrt{ \frac{ \omega^2 L^2 \omega_{LC}^4}{R^2(\omega_{LC}^2 - \omega^2)^2 - \omega^2L^2 \omega_{LC}^4}}</math>
 
::<math> = \sqrt{ \frac{ \omega^2 }{C^2R^2(\omega_{LC}^2 - \omega^2)^2 - \omega^2}}</math>
 
::<math> = \sqrt{ \frac{ \omega^2 }{\frac{1}{\omega_{RC}^2}(\omega_{LC}^2 - \omega^2)^2 - \omega^2}}</math>
 
 
 
 
 
{| border="1"  |cellpadding="20" cellspacing="0
 
|-
 
|<math>L = 33 \mu H</math> and  <math>C = 1 \mu F </math> and R=200 <math>\Omega</math>
 
|-
 
|[[File:TF_EIM_LC_paral_Gain.png | 200 px]]
 
|-
 
|<math>\Rightarrow \omega = 174077.66</math> rad/s  or <math>\nu = \frac{\omega}{2 \pi} = 27705</math> Hz
 
|}
 
 
==== Q and Bandwidth====
 
 
 
In the above circuit
 
 
: <math>\nu = \omega/2 \pi = \frac{1}{2 \pi \sqrt{LC}}= 27705 Hz</math>
 
 
The inductors reactance at this resonance frequency is
 
 
:<math>X_{L} = \omega L = 2 \pi \nu L = \frac{L}{\sqrt{LC}} = \sqrt{\frac{L}{C}} = \sqrt{\frac{33 \times 10^{-6} H}{1 \times 10^{-6}F}} = 5.7 \Omega</math>
 
 
 
;Bandwith: The most common definition for the Bandwidth of this circuit is the frequency range over which the output decreases by 3 dB.  This correspond to the frequency at which the circuits power is cut in half from the resonance frequency.
 
 
:<math>P = I^2 R</math>
 
:<math>P_{1/2} = (\sqrt{2}I)^2 R</math>
 
 
[[File:TF_EIM_BandWidthDef_LC.gif | 200 px]]
 
 
;Quality Factor
 
:The Quality factor for this circuit may be expressed in term of the bandwidth such that
 
::<math>Q=\frac{\omega_0}{BW}=\frac{\omega_0}{\Delta \omega}</math>
 
 
  
  
 
[[Forest_Electronic_Instrumentation_and_Measurement]]
 
[[Forest_Electronic_Instrumentation_and_Measurement]]

Revision as of 20:18, 7 February 2011