Difference between revisions of "Lab 5 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 61: Line 61:
 
==Questions==
 
==Questions==
  
1.Is there a value of <math>R</math> in which <math>V_{out} \approx V_{in}</math> at resonance. What is the value?(5 pnts)
+
#What is the bandwidth of the above circuit? (5 pnts)
 +
 
 +
From the plot above we have <math>\left(\frac{V_{out}}{_{Vin}} \right)_{max} =  0.0138 </math>
 +
 
 +
The bandwidth defined as the width from <math>\omega_1</math> to <math>\omega_2</math> where the amplitude of signal drop down to <math>\frac{1}{\sqrt{2}}</math>.
 +
 
 +
At this point <math>\left(\frac{V_{out}}{V_{in}} \right) =  \frac{0.0138}{\sqrt{2}}  = 0.00976</math>. Let's plot this line and calculate the bandwidth.
  
 
=The RLC cicuit=
 
=The RLC cicuit=

Revision as of 23:41, 3 February 2011

Go Back to All Lab Reports


LC Resonance circuits

The LC circuit

TF EIM Lab5 LC.png

Design a parallel LC resonant circuit with a resonant frequency between 50-200 kHz. use [math]L[/math] = 10 - 100 [math]\mu H[/math], R = 1k [math]\Omega[/math]

[math]\omega_0=\frac{1}{\sqrt{\mbox{LC}}}[/math]

I choose the following values for [math]\mbox{L}[/math] and [math]\mbox{C}[/math]:

[math]\mbox{L}=33\ \mu H[/math]
[math]\mbox{C}=1.024\ \mu F[/math]
[math]\mbox{R}=0.989\ k \Omega[/math]
[math]\mbox{R}_L=2.5\ \Omega[/math]

So the resonance frequency is [math]\omega_0=\frac{1}{\sqrt{33\ \mu H \cdot 1.024\ \mu F}} = 172 \cdot 10^3\ \frac{\mbox{rad}}{\mbox{sec}}[/math]

[math]f=\frac{\omega_0}{2\pi} = 27.4\ \mbox{kHz}[/math]

And

[math]\mbox{Q} = \frac{1}{\mbox{R}} \sqrt{\frac{\mbox{L}}{\mbox{C}}} = 2.27[/math]

Construct the LC circuit using a non-polar capacitor

Measure the Gain [math]\equiv \frac{V_{out}}{V_{in}}[/math] as a function of frequency. (25 pnts)

L5 LC table.png

Compare the measured and theoretical values of the resonance frequency ([math]\omega_{L}[/math]) (10 pnts)

Let's plot the data from table above:

L5 LC circuit.png


And let's zoom the graph above at resonance frequency:

L5 LC zoom.png


So the experimentally measured resonance frequency is:

[math]f = 27.7\ \mbox{kHz}[/math]

And the predicted value of resonance frequency is:

[math]f = 27.4\ \mbox{kHz}[/math]

The error is:

[math]Error = \left| \frac{f_{exp} - f_{theor}}{f_{theor}} \right| = \left| \frac{27.7 - 27.4}{27.4} \right|= 1.09\ %[/math]


The error is small so I was lucky

Questions

  1. What is the bandwidth of the above circuit? (5 pnts)

From the plot above we have [math]\left(\frac{V_{out}}{_{Vin}} \right)_{max} = 0.0138 [/math]

The bandwidth defined as the width from [math]\omega_1[/math] to [math]\omega_2[/math] where the amplitude of signal drop down to [math]\frac{1}{\sqrt{2}}[/math].

At this point [math]\left(\frac{V_{out}}{V_{in}} \right) = \frac{0.0138}{\sqrt{2}} = 0.00976[/math]. Let's plot this line and calculate the bandwidth.

The RLC cicuit

TF EIM Lab5 RLC.png

Design and construct a series LRC circuit

Measure and Graph the Gain as a function of the oscillating input voltage frequency. (25 pnts)

Measure and Graph the Phase Shift as a function of the oscillating input voltage frequency. (25 pnts)

Questions

What is the current [math]I[/math] at resonance? (5 pnts)

What is the current as [math]\nu \rightarrow \infty[/math]? (5 pnts)

Forest_Electronic_Instrumentation_and_Measurement

Go Back to All Lab Reports