Difference between revisions of "TF EIM Chapt3"
		
		
		
		
		
		Jump to navigation
		Jump to search
		
				
		
		
	
|  (→gain) |  (→gain) | ||
| Line 19: | Line 19: | ||
| ::<math> = \sqrt{ \left [ \frac{\frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} }{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )} \right ]  \left [ \frac{\frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} }{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )} \right ]^*}</math> | ::<math> = \sqrt{ \left [ \frac{\frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} }{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )} \right ]  \left [ \frac{\frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} }{\left (R+ \frac{i \omega L}{1- \frac{\omega^2}{\omega_{LC}^2}} \right )} \right ]^*}</math> | ||
| − | ::<math> = \sqrt{ \frac{ \omega^2 L^2 \omega_{LC}^4}{R^2(\omega_{LC}^2 - \omega^2) - \omega^2L^2 \omega_{LC}^4}}</math> | + | ::<math> = \sqrt{ \frac{ \omega^2 L^2 \omega_{LC}^4}{R^2(\omega_{LC}^2 - \omega^2)^2 - \omega^2L^2 \omega_{LC}^4}}</math> | 
| − | ::<math> = \sqrt{ \frac{ \omega^2 }{C^2R^2(\omega_{LC}^2 - \omega^2) - \omega^2}}</math> | + | ::<math> = \sqrt{ \frac{ \omega^2 }{C^2R^2(\omega_{LC}^2 - \omega^2)^2 - \omega^2}}</math> | 
| [[Forest_Electronic_Instrumentation_and_Measurement]] | [[Forest_Electronic_Instrumentation_and_Measurement]] | ||
Revision as of 05:15, 2 February 2011
gain
Loop Theorem
or
- Notice
- When then the AC signal is attenuated.
Looking at the Voltage divider aspect of the circuit