Difference between revisions of "TF EIM Chapt3"

From New IAC Wiki
Jump to navigation Jump to search
(Replaced content with ' === Phase shift=== Forest_Electronic_Instrumentation_and_Measurement')
Line 1: Line 1:
==RLC circuit==
 
  
An RLC circuit is a Resistor, an Inductors, and a Capacitor in series with an electromotive force.
+
=== Phase shift===
 
 
[[File:TF_EIM_Lab5_RLC.png| 200 px]]
 
 
 
 
 
===Effective impedance===
 
 
 
:<math>X_{out} = R_L + X_C + X_L = R_L + \frac{1}{i \omega C} + i \omega L</math>
 
 
 
:<math>\left | X_{out} \right | =  \sqrt{\left [ R_L + i \left (\frac{-1}{\omega C} +  \omega L\right ) \right ]\left [ R - i \left (\frac{-1}{\omega C} + \omega L\right ) \right ]^*}</math>
 
:: <math>=  \sqrt{ R_L^2 +  \left ( \omega L -  \frac{1}{\omega C} \right )^2}</math>
 
  
=== Gain===
 
Loop Theorem
 
  
: <math>V_{in} = I (R+ X_{out})</math>
 
  
 
+
[[Forest_Electronic_Instrumentation_and_Measurement]]
Voltage Divider
 
 
 
:<math>V_{AB}=V_{out} = \frac{X_{out}}{R + X_{out}}V_{in}</math>
 
 
 
 
 
:<math>\left | \frac{V_{out}}{V_{in}}\right | = \sqrt{\left [ \frac{X_{out}}{R + X_{out}}\right ]\left [ \frac{X_{out}}{R + X_{out}}\right ]^*}</math>
 
<math>R_L + i \left ( \omega L - \frac{1}{\omega C}\right)</math>
 
:<math>\left | \frac{V_{out}}{V_{in}}\right | = \sqrt{\left [ \frac{R_L + i \left ( \omega L - \frac{1}{\omega C}\right)}{R + R_L + i \left ( \omega L - \frac{1}{\omega C}\right)}\right ]\left [ \frac{R_L + i \left ( \omega L - \frac{1}{\omega C}\right)}{R + R_L + i \left ( \omega L - \frac{1}{\omega C}\right)}\right ]^*}</math>
 
 
 
::<math> = \sqrt{\frac{R_L^2 + \left ( \omega L - \frac{1}{\omega C}\right)^2}{(R + R_L)^2 +  \left ( \omega L - \frac{1}{\omega C}\right)^2}}</math>
 
 
 
::<math> = \sqrt{\frac{R_L^2 + \left ( \frac{\omega^2 LC - 1}{\omega C}\right)^2}{(R + R_L)^2 +  \left ( \frac{\omega^2 LC - 1}{\omega C}\right)^2}}</math>
 
 
 
Let
 
 
 
:<math>\omega_0 = \sqrt{\frac{1}{LC}}</math>
 
 
 
Then
 
:<math>\left | \frac{V_{out}}{V_{in}}\right |  = \sqrt{\frac{R_L^2 + \left ( \frac{\omega^2 - \omega_0^2}{\omega_0^2 \omega C}\right)^2}{(R + R_L)^2 +  \left ( \frac{\omega^2- \omega_0^2}{\omega_o^2 \omega C}\right)^2}}</math>
 
 
 
When<math> \omega = \sqrt{{1}{LC}} = \omega_0</math>
 
 
 
Then
 
:<math>\left | \frac{V_{out}}{V_{in}}\right |  =\frac{R}{R+R_L}</math>
 
 
 
=== Phase shift===
 

Revision as of 03:54, 2 February 2011