Difference between revisions of "Lab 4 RS"
Line 121: | Line 121: | ||
==Calculate and expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)== | ==Calculate and expression for the phase shift <math>\theta</math> as a function of <math>\nu</math>, <math>R</math>, <math>C</math> and graph <math>\theta</math> -vs <math>\nu</math>. (20 pnts)== | ||
− | From the phasor diagram above (question | + | From the phasor diagram above (question 4) the angle between vectors <math>V_{in}</math> and <math>V_{out}</math> given by |
− | <math>\Phi = \arctan \ (V_R | + | <math>\Phi = \arctan \ (V_C/V_R) = =\arctan \ \left[ \frac{I \left|\frac{1}{i\omega C}\right|}{IR} \right] = \arctan\ \left ( \farc{1}{\omega RC} \right )</math> |
Revision as of 06:17, 26 January 2011
- RC High-pass filter
1-50 kHz filter (20 pnts)
1. Design a high-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter's attenuation of the AC signal goes to 0(not passed). For a High pass filter, AC signals with a frequency below the 1-50 kHz range will be attenuated .
- To design low-pass RC filter I had:
So
2. Now construct the circuit using a non-polar capacitor.
3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
4. Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
0.1 | |||
1.0 | |||
2.0 | |||
3.0 | |||
4.0 | |||
5.0 | |||
6.0 | |||
7.0 | |||
8.0 | |||
9.0 | |||
10.0 | |||
11.0 | |||
12.0 | |||
15.0 | |||
20.0 | |||
30.0 | |||
40.0 | |||
50.0 | |||
100.0 | |||
200.0 |
5. Graph the -vs-
phase shift (10 pnts)
- measure the phase shift between and
Questions
Compare the theoretical and experimentally measured break frequencies. (5 pnts)
Calculate and expression for as a function of , , and .(5 pnts)
We have:
Dividing second equation into first one we get the voltage gain:
And we are need the real part:
Compare the theoretical and experimental value for the phase shift . (5 pnts)
The experimental phase shift is
The theoretical phase shift is
Sketch the phasor diagram for , , , and . Put the current along the real voltage axis. (30 pnts)
What is the phase shift for a DC input and a very-high frequency input?(5 pnts)
Because a DC circuit doesn't have any oscillation there are no any phase shift.
Calculate and expression for the phase shift as a function of , , and graph -vs . (20 pnts)
From the phasor diagram above (question 4) the angle between vectors
and given by
Forest_Electronic_Instrumentation_and_Measurement Go Back to All Lab Reports