Difference between revisions of "Lab 4 RS"

From New IAC Wiki
Jump to navigation Jump to search
Line 5: Line 5:
  
 
= 1-50 kHz filter (20 pnts)=
 
= 1-50 kHz filter (20 pnts)=
1.) Design a high-pass RC filter with a break point between 1-50 kHz.  The break point is the frequency at which the filter's attenuation of the AC signal goes to 0(not passed).  For a High pass filter, AC signals with a frequency below the 1-50 kHz range will be attenuated .
+
1. Design a high-pass RC filter with a break point between 1-50 kHz.  The break point is the frequency at which the filter's attenuation of the AC signal goes to 0(not passed).  For a High pass filter, AC signals with a frequency below the 1-50 kHz range will be attenuated .
  
 
[[File:TF_EIM_Lab4.png | 400 px]]
 
[[File:TF_EIM_Lab4.png | 400 px]]
Line 21: Line 21:
  
  
2.) Now construct the circuit using a non-polar capacitor.
+
2. Now construct the circuit using a non-polar capacitor.
  
3.)use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
+
3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
  
4.)Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
+
4. Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
  
 
{| border="3"  cellpadding="20" cellspacing="0"
 
{| border="3"  cellpadding="20" cellspacing="0"
Line 59: Line 59:
  
 
#
 
#
5.)Graph the <math>\log \left(\frac{V_{out}}{V_{in}} \right)</math> -vs- <math>\log (\nu)</math>
+
5. Graph the <math>\log \left(\frac{V_{out}}{V_{in}} \right)</math> -vs- <math>\log (\nu)</math>
  
 
=phase shift (10 pnts)=
 
=phase shift (10 pnts)=

Revision as of 05:21, 26 January 2011

Go Back to All Lab Reports


RC High-pass filter

1-50 kHz filter (20 pnts)

1. Design a high-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter's attenuation of the AC signal goes to 0(not passed). For a High pass filter, AC signals with a frequency below the 1-50 kHz range will be attenuated .

TF EIM Lab4.png


To design low-pass RC filter I had:
[math]R=10.5\ \Omega[/math]  
[math]C=1.250\ \mu F[/math]

So

[math]\omega_b = \frac{1}{RC} = 76.19\cdot 10^3\ \frac{rad}{s}[/math]
[math]f_b = \frac{\omega_b}{2\pi} = 12.13\ \mbox{kHz}[/math]


2. Now construct the circuit using a non-polar capacitor.

3. Use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.

4. Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.

[math]\nu[/math] [math]V_{in}[/math] [math]V_{out}[/math] [math]\frac{V_{out}}{V_{in}}[/math]
Hz Volts Volts

5. Graph the [math]\log \left(\frac{V_{out}}{V_{in}} \right)[/math] -vs- [math]\log (\nu)[/math]

phase shift (10 pnts)

  1. measure the phase shift between [math]V_{in}[/math] and [math]V_{out}[/math]

Questions

  1. compare the theoretical and experimentally measured break frequencies. (5 pnts)
  2. Calculate and expression for [math]\frac{V_{out}}{ V_{in}}[/math] as a function of [math]\nu[/math], [math]R[/math], and [math]C[/math].(5 pnts)
  3. Compare the theoretical and experimental value for the phase shift [math]\theta[/math]. (5 pnts)
  4. Sketch the phasor diagram for [math]V_{in}[/math],[math] V_{out}[/math], [math]V_{R}[/math], and [math]V_{C}[/math]. Put the current [math]I[/math] along the real voltage axis. (30 pnts)
  5. what is the phase shift [math]\theta[/math] for a DC input and a very-high frequency input?(5 pnts)
  6. calculate and expression for the phase shift [math]\theta[/math] as a function of [math]\nu[/math], [math]R[/math], [math]C[/math] and graph [math]\theta[/math] -vs [math]\nu[/math]. (20 pnts)


Forest_Electronic_Instrumentation_and_Measurement Go Back to All Lab Reports