Difference between revisions of "TF EIMLab3 Writeup"
Jump to navigation
Jump to search
Line 48: | Line 48: | ||
=Questions= | =Questions= | ||
− | + | 1.)compare the theoretical and experimentally measured break frequencies. (5 pnts) | |
+ | |||
+ | \omega_{break} = \frac{1}{RC} = \frac{1}{400 \times 10^{3} \times 9.45 \times 10^{-9}} = = 2.6 \times 10^{2} | ||
+ | |||
+ | {| border="3" cellpadding="20" cellspacing="0" | ||
+ | |Theory|| Exp || %diff|| | ||
+ | |- | ||
+ | | || || || | ||
+ | |- | ||
+ | |||
+ | |} | ||
+ | |||
#Calculate and expression for <math>\frac{V_{out}}{ V_{in}}</math> as a function of <math>\nu</math>, <math>R</math>, and <math>C</math>. The Gain is defined as the ratio of <math>V_{out}</math> to <math>V_{in}</math>.(5 pnts) | #Calculate and expression for <math>\frac{V_{out}}{ V_{in}}</math> as a function of <math>\nu</math>, <math>R</math>, and <math>C</math>. The Gain is defined as the ratio of <math>V_{out}</math> to <math>V_{in}</math>.(5 pnts) | ||
#Compare the theoretical and experimental value for the phase shift <math>\theta</math>. (5 pnts) | #Compare the theoretical and experimental value for the phase shift <math>\theta</math>. (5 pnts) |
Revision as of 06:04, 21 January 2011
- RC Low-pass filter
1-50 kHz filter (20 pnts)
- Design a low-pass RC filter with a break point between 1-50 kHz. The break point is the frequency at which the filter starts to attenuate the AC signal. For a Low pass filter, AC signals with a frequency above 1-50 kHz will start to be attenuated (not passed).
- Now construct the circuit using a non-polar capacitor.
- use a sinusoidal variable frequency oscillator to provide an input voltage to your filter.
- Measure the input and output voltages for at least 8 different frequencies which span the frequency range from 1 Hz to 1 MHz.
Hz | Volts | Volts | |
50 | 0.6 | 0.3 | |
100 | 0.5 | 0.18 | |
250 | 0.5 | 0.075 | |
500 | 0.45 | 0.04 | |
1000 | 0.4 | 0.017 | |
2500 | 0.28 | 0.005 | |
5056 | 0.16 | 0.005 | |
- Graph the -vs-
phase shift (10 pnts)
- measure the phase shift between and
Questions
1.)compare the theoretical and experimentally measured break frequencies. (5 pnts)
\omega_{break} = \frac{1}{RC} = \frac{1}{400 \times 10^{3} \times 9.45 \times 10^{-9}} = = 2.6 \times 10^{2}
Theory | Exp | %diff | |
- Calculate and expression for as a function of , , and . The Gain is defined as the ratio of to .(5 pnts)
- Compare the theoretical and experimental value for the phase shift . (5 pnts)
- Sketch the phasor diagram for , , , and . Put the current along the real voltage axis. (30 pnts)
- what is the phase shift for a DC input and a very-high frequency input?(5 pnts)
- calculate and expression for the phase shift as a function of , , and graph -vs . (20 pnts)