Difference between revisions of "Faraday Cup Temperature"
Jump to navigation
Jump to search
Line 31: | Line 31: | ||
Assume the all beam power goes to one FC rod and area of radiation is 2 cm^2 (two back sides) we can calculate the corresponding temperature: | Assume the all beam power goes to one FC rod and area of radiation is 2 cm^2 (two back sides) we can calculate the corresponding temperature: | ||
− | <math> T^4 = \frac {P}{0.924\ A\ \sigma} = \frac {1.9\ W}{(0.924)(2\cdot 10^{-4}\ m^2)(5.67\cdot 10^{-8} \frac {W}{m^2 K^4})} = 0. | + | <math> T^4 = \frac {P}{0.924\ A\ \sigma} = \frac {1.9\ W}{(0.924)(2\cdot 10^{-4}\ m^2)(5.67\cdot 10^{-8} \frac {W}{m^2 K^4})} = 0.1813\cdot10^{12}K^4</math> |
So | So |
Latest revision as of 05:49, 14 October 2010
Calculating the temperature of a Faraday Cup Rod
Number of particles per second and corresponding beam power
Assume electron beam parameters at FC location are:
Frequency: f = 300 Hz Peak current: I = 3 Amps Pulse width: t = 50 ps Beam energy: E = 45 MeV
The number of electrons per second at FC location are:
The corresponding beam power for 45 MeV electron beam is:
Temperature calculation
Now apply the Stefan-Boltzmann Law for one Faraday cup rod
Here,
A is the radiated area of the rode
is the Stefan-Boltzmann constant.
Assume the all beam power goes to one FC rod and area of radiation is 2 cm^2 (two back sides) we can calculate the corresponding temperature:
So
Conclusion
Because the melting point of Aluminum is 933.5 K we are safety.