Difference between revisions of "Geometry (25 MeV LINAC exit port)"

From New IAC Wiki
Jump to navigation Jump to search
Line 11: Line 11:
 
  <math>x_2 + r_2 = R</math>
 
  <math>x_2 + r_2 = R</math>
  
  <math>\frac{1}{\sqrt{2}}\ (286+183)\ \tan\left(\frac{0.511}{E}\right) +
+
  <math>\frac{1}{\sqrt{2}}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) +
           \frac{1}{2}\ (286+183)\ \tan\left(\frac{1}{2}\ \frac{0.511}{E}\right) = R  </math>
+
           \frac{1}{2}\ (286+183)\ \tan\left(\frac{1}{2}\ \frac{0.511}{E_{min}}\right) = R  </math>
 +
 
 +
Solving for <math>E_{min}</math>
  
 
=25 MeV geometry=
 
=25 MeV geometry=

Revision as of 03:10, 13 June 2010

Go Back

Minimum accelerator energy to run experiment

Min energy.png

The minimum energy of accelerator (MeV) is limited by fitting the collimator (r2) into the hole (R)

Assuming the collimator diameter is ΘC/2

[math]x_2 + r_2 = R[/math]
[math]\frac{1}{\sqrt{2}}\ (286+183)\ \tan\left(\frac{0.511}{E_{min}}\right) +
           \frac{1}{2}\ (286+183)\ \tan\left(\frac{1}{2}\ \frac{0.511}{E_{min}}\right) = R  [/math]

Solving for Emin

25 MeV geometry

critical angle

ΘC=mec2Ebeam=0.511 MeV25 MeV=1.17 o

kicker angle

  [math]\Delta_1 = 286\ cm\ *\ \tan(1.17^o) = 5.84\ cm[/math] 
[math]x^2+x^2 = 5.84^2\ cm \ \ \Rightarrow\ \ x = 4.13\ cm[/math]
[math]\Delta_2 = 4.13\ cm \ \ \Rightarrow\ \ \tan^{-1}\left(\frac{4.13}{286}\right) = 0.827\ ^o[/math]

geometry (Θc/2)

collimator center position

  [math]286\ cm \cdot \tan (0.827) = 4.13\ cm[/math]  (wall 1)
[math](286 + 183)\ cm \cdot \tan (0.827) = 6.77\ cm[/math] (wall 2)

collimator diameter

  [math]286\ cm \cdot \tan (1.17/2) = 2.92\ cm[/math]  (wall 1)
[math](286 + 183)\ cm \cdot \tan (1.17/2) = 4.79\ cm[/math] (wall 2)

collimator critical angle

  [math] AB = AC - BD/2 = (4.13 - 2.92/2)\ cm = 2.67\ cm [/math]
[math] A_1D_1 = A_1C_1 + B_1D_1/2 = (6.77 + 4.79/2)\ cm = 9.165\ cm [/math]
[math]\bigtriangleup BED_1 \Rightarrow \tan (\alpha) = \frac{(9.165 - 2.67)\ cm}{183\ cm} \Rightarrow \alpha = 2.033^o[/math]:

minimal distance from the wall (Θc/2)

  [math]\bigtriangleup FAB  \Rightarrow FA = \frac{AB}{\tan (2.033^o)} = \frac{2.67\ cm}{\tan (2.033^o)} = 75\ cm [/math]

geometry (Θc/4)

collimator center position

  [math]286\ cm \cdot \tan (0.827) = 4.13\ cm[/math]  (wall 1)
[math](286 + 183)\ cm \cdot \tan (0.827) = 6.77\ cm[/math] (wall 2)

collimator diameter

  [math]286\ cm \cdot \tan (1.17/4) = 1.46\ cm[/math]  (wall 1)
[math](286 + 183)\ cm \cdot \tan (1.17/4) = 2.39\ cm[/math] (wall 2)

collimator critical angle

  [math] AB = AC - BD/2 = (4.13 - 1.46/2)\ cm = 3.4\ cm [/math]
[math] A_1D_1 = A_1C_1 + B_1D_1/2 = (6.77 + 2.39/2)\ cm = 7.965\ cm [/math]
[math]\bigtriangleup BED_1 \Rightarrow \tan (\alpha) = \frac{(7.965 - 3.4)\ cm}{183\ cm} \Rightarrow \alpha = 1.429^o[/math]:

minimal distance from the wall (Θc/4)

  [math]\bigtriangleup FAB  \Rightarrow FA = \frac{AB}{\tan (1.429^o)} = \frac{3.4\ cm}{\tan (1.429^o)} = 136\ cm [/math]

Funny pictures...

how it looks 1 (Θc/2, box 3"x4" and then pipe 4")

File:Vacuum pipe collimator .png

how it looks 2 (Θc/4, box 3"x4" and then pipe 4")

File:Vacuum pipe collimator .png


Go Back