Difference between revisions of "Counts Rate (44 MeV LINAC)"
Jump to navigation
Jump to search
Line 68: | Line 68: | ||
fractional solid angle = <math>\frac{\pi * (1 cm)^{2}}{4 \pi (100cm^{2}} = \frac{1}{4} \cdot 10^{-4}</math> <= geometrical acceptance | fractional solid angle = <math>\frac{\pi * (1 cm)^{2}}{4 \pi (100cm^{2}} = \frac{1}{4} \cdot 10^{-4}</math> <= geometrical acceptance | ||
+ | finally we have | ||
− | <math>1.2 \cdot 10^{6}\ \frac{neutrons}{sec} \times \frac{1}{4} \cdot 10^{-4} = 300 \frac{neutrons}{sec} | + | <math>1.2 \cdot 10^{6}\ \frac{neutrons}{sec} \times \frac{1}{4} \cdot 10^{-4} = 300 \frac{neutrons}{sec} </math> |
'''Therefore, this experiment is do able.''' | '''Therefore, this experiment is do able.''' |
Revision as of 22:10, 17 May 2010
LINAC parameters used in calculations
1) pulse width 50 ns
2) pulse current 50 A
3) repetition rate 300 Hz
4) energy 44 MeV
Number of electrons/sec on radiator
Number of photons/sec from radiator
bremsstrahlung
plot from Dale
in (10,20) MeV region we have about
0.1 photons/electrons/MeV/r.l
radiation length
Titanium r.l. is 3.59 cm
take radiator thickness is
steps together...
Collimation factor
assume we collimate 4-6 % of total # of photons (Alex, GEANT calculation)
then, incident flux on target is
Number of neutrons/sec (yields)
cross section
plot from Berman
From plot above the average cross section for
in (10,20) MeV region is:130 mb
target thickness,
Assume the target thickness is 1 cm:
neutrons per fission
2.4 neutrons/fission
steps together...
Worst Case Isotropic Neutrons
Let's say we have:
radius detector = 1 cm
1 meter away
fractional solid angle =
<= geometrical acceptancefinally we have
Therefore, this experiment is do able.