Difference between revisions of "Counts Rate (44 MeV LINAC)"

From New IAC Wiki
Jump to navigation Jump to search
Line 1: Line 1:
 
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]
 
[http://wiki.iac.isu.edu/index.php/PhotoFission_with_Polarized_Photons_from_HRRL Go Back]
  
==LINAC parameters used in calculations==
+
=LINAC parameters used in calculations=
 
1) pulse width 50 ns <br>
 
1) pulse width 50 ns <br>
 
2) pulse current 50 A <br>
 
2) pulse current 50 A <br>
Line 7: Line 7:
 
4) energy 44 MeV <br>
 
4) energy 44 MeV <br>
  
==number of <math>\ e^-/sec\ </math> from radiator==
+
=number of <math>\ e^-/sec\ </math> on radiator=
 
<math> 50ps \times 50A \times 300Hz \times \frac{1\cdot e^-}{1.6\cdot 10^{-19}C} = 0.75 \cdot 10^{13} \frac{e^-}{sec}</math><br><br>
 
<math> 50ps \times 50A \times 300Hz \times \frac{1\cdot e^-}{1.6\cdot 10^{-19}C} = 0.75 \cdot 10^{13} \frac{e^-}{sec}</math><br><br>
  
==number of <math>\ \gamma 's/sec\ </math> after radiator==
+
=number of <math>\ \gamma 's/sec\ </math> from radiator=
 
<math>10^{-3} \frac{\gamma 's}{(e^-\ MeV\ r.l.)} \times 2 \cdot 10^{-4} r.l. \times 44 MeV \times 0.375 \cdot 10^{12} \frac{e^-}{sec}=0.3 \cdot 10^{7} \frac{\gamma}{sec}</math><br><br>
 
<math>10^{-3} \frac{\gamma 's}{(e^-\ MeV\ r.l.)} \times 2 \cdot 10^{-4} r.l. \times 44 MeV \times 0.375 \cdot 10^{12} \frac{e^-}{sec}=0.3 \cdot 10^{7} \frac{\gamma}{sec}</math><br><br>
  
==number of neutrons in 1 second==
+
=number of neutrons in 1 second=
  
==geometrical factor, isotropic case==
+
=geometrical factor, isotropic case=
 
 
==conclusion==
 

Revision as of 20:13, 17 May 2010

Go Back

LINAC parameters used in calculations

1) pulse width 50 ns
2) pulse current 50 A
3) repetition rate 300 Hz
4) energy 44 MeV

number of [math]\ e^-/sec\ [/math] on radiator

[math] 50ps \times 50A \times 300Hz \times \frac{1\cdot e^-}{1.6\cdot 10^{-19}C} = 0.75 \cdot 10^{13} \frac{e^-}{sec}[/math]

number of [math]\ \gamma 's/sec\ [/math] from radiator

[math]10^{-3} \frac{\gamma 's}{(e^-\ MeV\ r.l.)} \times 2 \cdot 10^{-4} r.l. \times 44 MeV \times 0.375 \cdot 10^{12} \frac{e^-}{sec}=0.3 \cdot 10^{7} \frac{\gamma}{sec}[/math]

number of neutrons in 1 second

geometrical factor, isotropic case