Difference between revisions of "Geometry (44 MeV LINAC exit port)"
Jump to navigation
Jump to search
Line 17: | Line 17: | ||
=general collimator setup= | =general collimator setup= | ||
− | [[File:minimum_energy_condition.png]] | + | [[File:minimum_energy_condition.png|900px]] |
<math>AC = 286\cdot\tan(\Theta_K)\ cm</math><br> | <math>AC = 286\cdot\tan(\Theta_K)\ cm</math><br> | ||
Line 25: | Line 25: | ||
<math>B_1D_1 = (286 + 183)\cdot\tan(\Theta_C/m)\ cm</math><br> | <math>B_1D_1 = (286 + 183)\cdot\tan(\Theta_C/m)\ cm</math><br> | ||
− | <math>\alpha = \frac{A_1D_1 - AB}{183} = \frac{(A_1C_1 + C_1D_1/2) - (AC - | + | <math>\alpha = \frac{A_1D_1 - AB}{183} = \frac{(A_1C_1 + C_1D_1/2) - (AC - B_1D_1/2)}{183}</math> |
=Vacuum pipe location (<math> \Theta_c/2</math>)= | =Vacuum pipe location (<math> \Theta_c/2</math>)= |
Revision as of 22:41, 20 June 2010
90 exit port measurements
Critical and Kicker angles
general collimator setup
Vacuum pipe location ( )
collimator location
1) center position:
(wall 1)
(wall 2)
2) collimator diameter:
(wall 1)
(wall 2)
collimator critical angle
from triangle
:
minimal distance from the wall
from triangle FAB:
Vacuum pipe location ( )
collimator location
1) center position:
(wall 1)
(wall 2)
2) collimator diameter:
(wall 1)
(wall 2)
collimator critical angle
from triangle
:
minimal distance from the wall
from triangle FAB:
Funny pictures...
how it looks ( , pipe 3")
how it looks 1 ( , pipe 3")
how it looks 2 ( , pipe 3")
how it looks 4 ( , pipe (2 1/2)" and then pipe 4")
need to adjust to converter position
how it looks 5 ( , box 3"x4" and then pipe 4")
need to adjust to converter position